• Title/Summary/Keyword: Deposition system

Search Result 1,615, Processing Time 0.038 seconds

Development of New Rapid Prototyping System Performing both Deposition and Machining(I);Process and Framework (적층과 절삭을 복합적으로 수행하는 새로운 개녕의 판재 적층식 쾌속 시작 시스템의 개발(I);공정 및 기반구조)

  • Heo, Jeong-Hun;Hwang, Jae-Cheol;Lee, Geon-U;Kim, Jong-Won;Han, Dong-Cheol;Ju, Jong-Nam;Park, Jong-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1958-1967
    • /
    • 2000
  • Rapid Prototyping( RP ) has been increasingly applied in the process of design and development of new products. RP can shrink the time and expense required to bring a new product from initial concept to production. However, the necessity of using RP for short-run manufacturing is continuously driving a development of a cost-effective technique that will produce completely-finished quality parts in a very short time. To meet these demands, the improvements in production speed, accuracy materials, and cost are crucial. Thus, a new hybrid-RP system performing both deposition and machining in a station is proposed in this paper. It incorporates both material deposition in layers and material removal from the outer surface of the layer to produce the required surface finish. The new hybrid-RP system can dramatically reduce the total build time and fabricate largo-sized and freeform objects because it uses very thick layers, i.e.

Numerical Modeling of an Inductively Coupled Plasma Sputter Sublimation Deposition System

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.23 no.4
    • /
    • pp.179-186
    • /
    • 2014
  • Fluid model based numerical simulation was carried out for an inductively coupled plasma assisted sputter deposition system. Power absorption, electron temperature and density distribution was modeled with drift diffusion approximation. Effect of an electrically conducting substrate was analyzed and showed confined plasma below the substrate. Part of the plasma was leaked around the substrate edge. Comparison between the quasi-neutrality based compact model and Poisson equation resolved model showed more broadened profile in inductively coupled plasma power absorption than quasi-neutrality case, but very similar Ar ion number density profile. Electric potential was calculated to be in the range of 50 V between a Cr rod source and a conductive substrate. A new model including Cr sputtering by Ar+was developed and used in simulating Cr deposition process. Cr was modeled to be ionized by direct electron impact and showed narrower distribution than Ar ions.

Large-Scale Vacuum Technologies for $730{\times}920$ AMOLED Production; The world's largest OLED deposition system

  • Hwang, Changhun;Han, Seung-Jin;Kim, Do-Gon;Yook, Sim-Man;Kim, Seung-Han;Kim, Jin-Hyung;Kim, Beom-jai;Won, You-Tae;Park, Ki-Joo;Kim, Kwang-Ho;Kim, Byung-Seok;Kang, Teak-Sang;Kim, Jung-Hwan;Seo, Sang-Won;Song, Ha-Jin;Sim, Hyung-Bo;Noh, Young-Bo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.668-672
    • /
    • 2005
  • Doosan DND, OLED manufacturing equipment maker, has developed the largest deposition system to produce $730{\times}920mm$ size AMOLED devices for the first time in the world. It is necessary for producing 40" AMOLED panels to develop the large-scaled vacuum technologies including ICP plasma, stretching glass chuck, organic deposition, metal deposition and hybrid encapsulation processes.

  • PDF

Characteristics of Laser Aided Direct Metal Powder Deposition Process for Nickel-based Superalloy

  • Zhang, Kai;Liu, Weijun;Shang, Xiaofeng
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.521-522
    • /
    • 2006
  • Laser additive direct deposition of metals is a new rapid manufacturing technology, which combines with computer aided design, laser cladding and rapid prototyping. The advanced technology can build fully-dense metal components directly from CAD files with neither mould nor tool. Based on the theory of this technology, a promising rapid manufacturing system called "Laser Metal Deposition Shaping (LMDS)" is being developed significantly. The microstructure and mechanical properties of the LMDS-formed samples are tested and analyzed synthetically. As a result, significant processing flexibility with the LMDS system over conventional processing capabilities is recognized, with potentially lower production cost, higher quality components, and shorter lead time.

  • PDF

Enhancement of Dissolution Rates of Indomethacin Solvent Deposited on Excipients by Solvent Deposition Method (Indomethacin제제(製劑)의 용출속도증가(溶出速度增加)를 위한 Solvent Deposition Method의 이용(利用))

  • Ku, Young-Soon;Huh, Jin-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.12 no.3
    • /
    • pp.74-87
    • /
    • 1982
  • To evaluate the pharmaceutical aspects of solvent deposition method where drug is solvent deposited on the surface of excipients, a study has been made on dissolution characteristics of indomethacin solvent deposited on lactose and potato starch. In a solvent deposition system, the drug-to-excipient ratio and kind of excipient effect much on dissolution rates of indomethacin. The experimental results are as follows: 1) Lactose was shown to be superior to potato starch as excipients in indomethacin solvent deposited. 2) Total amount of indomethacin dissolved from solvent deposition systems at 30 minutes were enhanced about 5 to 23 times compared with that of pure indomethacin. 3) Increased dissotion amount of indomethacin from the solvent deposition systems were observed to be alike in the systems where the drug-to-excipient weight ratios were 1 : 5, 1 : 7 and 1 : 10.

  • PDF

Deposition of Epitaxial Silicon by Hot-Wall Chemical Vapor Deposition (CVD) Technique and its Thermodynamic Analysis

  • Koh, Wookhyun;Yoon, Deoksun;Pa, ChinHo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.173-176
    • /
    • 1998
  • Epitaxial Si layers were deposited on n- or p-type Si(100) substrates by hot-wall chemical vapor deposition (CVD) technique using the {{{{ {SiH }_{ 2} {Cl }_{2 } - {H }_{ 2} }}}}chemistry. Thermodynamic calculations if the Si-H-Cl system were carried out to predict the window of actual Si deposition procedd and to investigate the effects of process variables(i.e., the deposition temperature, the reactor pressure, and the source gas molar ratios) on the growth of epitaxial layers. The calculated optimum process conditions were applied to the actual growth runs, and the results were in good agreement with the calculation. The expermentally determined optimum process conditions were found to be the deposition temperature between 900 and 9$25^{\circ}C$, the reactor pressure between 2 and 5 Torr, and source gad molar ration({{{{ {H }_{2 }/ {SiH }_{ 2} {Cl }_{2 } }}}}) between 30 and 70, achieving high-quality epitaxial layers.

  • PDF

Numerical Modeling of Deposition Uniformity in ICP-CVD System (수치모델을 이용한 ICP-CVD 장치의 증착 균일도 해석)

  • Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.279-286
    • /
    • 2008
  • Numerical analysis is done to investigate which would be the most influencing process parameter in determining the uniformity of deposition thickness in TiN ICP-CVD(inductively coupled plasma chemical vapor deposition). Two configurations of ICP antenna are modeled; side and top planar. Side and top gas inlets are considered with each ICP antenna geometries. Precursor for TiN deposition was TDMAT(Tetrakis Diethyl Methyl Amido Titanium). Two step volume dissociation of TDMAT is used and absorption, desorption and deposition surface reactions are included. Most influencing factors are H and N concentration dissociated by electron impact collisions in plasma volume which depends on the relative positions of gas inlet and ICP antenna generated hot plasma region. Low surface recombination of N shows hollow type concentration, but H gives a bell type distribution. Film thickness at substrate edges is sensitive to gas flow rate and at high pressures getting more dependent on flow characteristics.

A Novel OLED Inspection Process Method with Simultaneous Measurement for Standard and Deposition Pattern (기준패턴과 증착패턴의 동시 측정을 통한 OLED 공정 검사 방법)

  • Kwak, Byeongho;Cheoi, Kyungjoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.4
    • /
    • pp.63-70
    • /
    • 2019
  • The subject of the simultaneous measuring system of base pattern and deposition pattern is a new research topic on a defect inspection of OLED. In this paper, we propose a new OLED inspection method that simultaneously measures standard and deposition pattern images. This method reduces unnecessary processes and tac time during OLED inspection. For an additional reduction of the tac time during pattern measurement, the ROI was configured to measure only in the designated ROI area instead of measuring the entire area of an image. During the ROI set-up, the value of effective deposition pattern area is included so that if the deposition pattern is out of the ROI zone, it would be treated as a defect before measuring the size and center point of the pattern. As a result, the tac time and inspection process could be shortened. The proposed method also could be applied to the OLED manufacturing process. Production of OLED could be increased by reducing tac time and inspection process.

Reduction of Plasma Process Induced Damage during HDP IMD Deposition

  • Kim, Sang-Yung;Lee, Woo-Sun;Seo, Yong-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.3
    • /
    • pp.14-17
    • /
    • 2002
  • The HDP (High Density Plasma) CVD process consists of a simultaneous sputter etch and chemical vapor deposition. As CMOS process continues to scale down to sub- quarter micron technology, HDP process has been widely used fur the gap-fill of small geometry metal spacing in inter-metal dielectric process. However, HBP CVD system has some potential problems including plasma-induced damage. Plasma-induced gate oxide damage has been an increasingly important issue for integrated circuit process technology. In this paper, thin gate oxide charge damage caused by HDP deposition of inter-metal dielectric was studied. Multiple step HDP deposition process was demonstrated in this work to prevent plasma-induced damage by introducing an in-situ top SiH$_4$ unbiased liner deposition before conventional deposition.

The effect of deposition condition on the oxidation of TbFeCo thin films in facing targets sputtering system (Facing targets sputtering system에서 TbFeCo박막의 산화에 미치는 제조조건의 영향)

  • 문정탁;김명한
    • Electrical & Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.511-519
    • /
    • 1994
  • The effect of the deposition conditions, such as the base pressure, working pressure, sputtering power, pre-sputtering, and deposition thickness in facing targets sputtering system(FTS), on the oxidation of the TbFeCo thin films was studied by investigating the magneto-optical properties as well as oxygen analysis by the AES depth profiles. The results showed that the base pressure did not affect the magnetic properties so much, probably due to the short flight distance of the sputtered particles. At the higher sputtering power and lower working pressure with pre-sputtering the oxidation of TbFeCo thin films was decreased. As the film thickness increased the TbFeCo thin films showed the perpendicular anisotropy from in-plane anisotropy overcoming the oxidation effect at the beginning of the sputtering.

  • PDF