• 제목/요약/키워드: Deposition parameter effects

검색결과 30건 처리시간 0.025초

노즐 형상과 기판의 위치 변화가 초음속 유동에 미치는 영향에 관한 수치해석 연구 (Numerical study on the effects of nozzle geometry and substrate location in the supersonic flow)

  • 박정재;윤석구;김호영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.58.2-58.2
    • /
    • 2010
  • This paper deals with the simulation of solid particle coating technology via supersonic nozzle in vacuum environment to devote as an aerosol-deposition device. In order to improve efficiencies of nozzle and coating process, effects of shockwave, nozzle geometry, and substrate location were studied computationally under a fixed chamber pressure of 0.01316 bar which is nearly vacuous. Shockwave is the important factor affect to entire flow because shockwave in the jet flow dissipates the kinetic energy of the flow in the supersonic condition. Results show that various nozzle geometries have significant effect on the supersonic flow and we know that the supersonic nozzle should be optimized to minimize the loss of the flow. Another parameter, the distance between substrate and nozzle tip, shows little effect in this study.

  • PDF

RF 마그네트론 스퍼터링법으로 증착된 Li$_2$O-B$_2$O$_3$-SiO$_2$ 계 비정질 박막 고체전해질의 증착변수에 따른 이온전도 특성에 관한 연구 (Effect of Deposition Parameter on Ionic Conductivity of RF Magnetron Sputtered Li$_2$O-B$_2$O$_3$-SiO$_2$ Solid Electroiyte Films)

  • 노남석;권혁상
    • 한국표면공학회지
    • /
    • 제27권2호
    • /
    • pp.65-73
    • /
    • 1994
  • Effects of deposition parameter on the ionic conductivity and structural change of the Lithium borosili-cate solid electrolyte films, prepared by rf sputtering using 7$LI_2O-3B_2O_3-1SiO_2$ single phase target and also a mosaic target enriched with $LI_2O$, were analyzed by measuring AC impedance and IR absorption spectra for the films. Thed solid electrolyte film deposited from the single phase target exhibited very low ionic conductivi-ty of $10^{-10}{\Omega}^{-1}cm{-1}$ at room temperature, a result of low $Li^+$ ion content(7.52 at%) in the film. The $Li^+$ con-ductivity for the films deposited from the mosaic target, however, significantly increased to $10^{-7}{\Omega}^{-1}cm{-1}$ due to both an increased $Li^+$content (14.75 at %) and a structural change of the films. The increased ionic conduc-tivity of the film appears to be associated with an easiness of ionic mobility by structural change of glassy film from a some close packed network structure to a open one. These structural changes of film were found to be closely related to the increase in the peak intensity at~$960cm^{-1}$ of IR absorption spectra for the glassy films. With increasing either argon pressure from 3 to 21 mtorr or rf power from 2 to 3 W/$cm^2$, the $Li^+$ conduc-tivity for the films significantly increased to an order of $10^{-6}{\Omega}^{-1}cm{-1}$ due to an increase in openness of film structure, as confirmed by both an increase in the IR absorption peak intensity at ~$960cm^{-1}$ and a resultant reduction of activation energy for mobility of $Li^+$ ion.

  • PDF

Se원소의 증발조건이 Cu(InGa)Se$_2$ 박막 태양전지 특성에 미치는 영향 (Characterization of Cu(InGa)Se$_2$ Solar Cells with Se Evaporation Conditions)

  • 김석기;이정철;강기환;윤경훈;박이준;송진수;한상옥
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.383-386
    • /
    • 2002
  • Polycrystalline Cu(In,Ga)Se$_2$(CIGS) thin-films were grown by co-evaporation on a soda lime glass substrate. In this paper the effects of the Se evaporation temperature on the properties of CuIn0.75Ga0.25Se2 (CIGS) thin films. Structure, surface morphology and optical properties of CIGS thin films deposited at various Se evaporation temperatures have been investigated using a number of analysis techniques. X-ray diffraction (XRD) analysis shows that CIGS films exhibit a strong <112> preferred orientation. As expected, at higher Se evaporation temperatures the films displayed a lower degree of crystallinity. The <112> peak was also enhanced and other CIGS peaks appeared simultaneously. These results were supported by experimental work using scanning electron microscopy When the Se evaporation temperature was increased, the average grain size also decreased together with a reduction Cu content. The Se evaporation temperature also had a significant inf1uence on the transmission spectra. Increasing the Se evaporation temperature, the cell efficiency was improved dramatically to 11.75% with Voc = 556 mV, Jsc = 32.17 mA/cm2 and FF = 0.66. The Se evaporation temperature is an important parameter in thin film deposition regardless of the deposition technique being used to deposit thin films

  • PDF

Growth and Characterization of Vertically well Aligned Crbon Nanotubes on Glass Substrate by Plasma Enhanced Hot Filament Chemical Vapor deposition

  • Park, Chong-Yun;Yoo, Ji-Beom
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.210-210
    • /
    • 2000
  • Vertically well aligned multi-wall carbon nanotubes (CNT) were grown on nickel coated glass substrates by plasma enhanced hot filament chemical vapor deposition at low temperatures below 600$^{\circ}C$. Acetylene and ammonia gas were used as the carbon source and a catalyst. Effects of growth parameters such as pre-treatment of substrate, plasma intensity, filament current, imput gas flow rate, gas composition, substrate temperature and different substrates on the growth characteristics of CNT were systematically investigated. Figure 1 shows SEM image of CNT grown on Ni coated glass substrate. Diameter of nanotube was 30 to 100nm depending on the growth condition. The diameter of CNT decreased and density of CNT increased as NH3 etching time etching time increased. Plasma intensity was found to be the most critical parameter to determine the growth of CNT. CNT was not grown at the plasma intensity lower than 500V. Growth of CNT without filament current was observed. Raman spectroscopy showed the C-C tangential stretching mode at 1592 cm1 as well as D line at 1366 cm-1. From the microanalysis using HRTEM, nickel cap was observed on the top of the grown CNT and very thin carbon amorphous layer of 5nm was found on the nickel cap. Current-voltage characteristics using STM showed about 34nA of current at the applied voltage of 1 volt. Electron emission from the vertically well aligned CNT was obtained using phosphor anode with onset electric field of 1.5C/um.

  • PDF

INDUCTION PLASMA DEPOSITION TECHNOLOGY FOR NUCLEAR FUEL FABRICATION

  • I. H. Jung;K. K. Bae;Lee, J. W.;Kim, T. K.;M. S. Yang
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(2)
    • /
    • pp.216-221
    • /
    • 1998
  • A study on induction plasma deposition with ceramic materials, yttria-stabilized-zirconia ZrO$_2$-Y$_2$O$_3$ (m.p 264O $^{\circ}C$), was conducted with a view developing a new method for nuclear fuel fabrication Before making dense pellets more than 96%TD., the spraying condition was optimized through the process parameters, such as chamber pressure, plasma plate power powder spraying distance, sheath gas composition, probe position, particle size and powders different morphology. The results with a 5mm thick deposit on rectangular planar graphite substrates showed a 97.11% theoretical density when the sheath gas flow rate was Ar/H$_2$120/20 l/min, probe position 8cm, particle size -75 ${\mu}{\textrm}{m}$ and spraying distance 22cm by AMDRY146 powder. The degree of influence of the main effects on density were powder morphology. particle size, sheath gas composition, plate power and spraying distance, in that order. Among the two parameter interactions, the sheath gas composition and chamber pressure affects density greatly. By using the multi-pellets mold wheel type, the pellet density did not exceed 94%T.D., owing to the spraying angle.

  • PDF

Deposition of ZrO$_2$ and TiO$_2$ Thin Films Using RF Magnet ron Sputtering Method and Study on Their Structural Characteristics

  • Shin, Y.S.;Jeong, S.H.;Heo, C.H.;Bae, I.S.;Kwak, H.T.;Lee, S.B.;Boo, J.H.
    • 한국표면공학회지
    • /
    • 제36권1호
    • /
    • pp.14-21
    • /
    • 2003
  • Thin films of ZrO$_2$ and TiO$_2$ were deposited on Si(100) substrates using RF magnetron sputtering technique. To study an influence of the sputtering parameters, systematic experiments were carried out in this work. XRD data show that the $ZrO_2$ films were mainly grown in the [111] orientation at the annealing temperature between 800 and $1000^{\circ}C$ while the crystal growth direction was changed to be [012] at above $1000^{\circ}C$. FT-IR spectra show that the oxygen stretching peaks become strong due to $SiO_2$ layer formation between film layers and silicon surface after annealing, and proved that a diffusion caused by either oxygen atoms of $ZrO_2$ layers or air into the interface during annealing. Different crystal growth directions were observed with the various deposition parameters such as annealing temperature, RF power magnitude, and added $O_2$ amounts. The growth rate of $TiO_2$ thin films was increased with RF power magnitude up to 150 watt, and was then decreased due to a sputtering effect. The maximum growth rate observed at 150 watt was 1500 nm/hr. Highly oriented, crack-free, stoichiometric polycrystalline $TiO_2$<110> thin film with Rutile phase was obtained after annealing at $1000^{\circ}C$ for 1 hour.

RF 마그네트론 스터터링에 의한 ZnO박막증착 및 SAW 필터 특성 분석 (Deposition of ZnO Thin Films by RF Magnetron Sputtering and Charcaterization of the ZnO thin film SAW filter)

  • 이용의;양형국;김영진;한정인;김형준
    • 한국재료학회지
    • /
    • 제4권7호
    • /
    • pp.783-791
    • /
    • 1994
  • rf 마그네트론 스퍼터링법을 이용하여 7059 유리기판 위에 ZnO압전박막을 증착하고, 공정변수인 rf 인가전력, 반응기 압력, $O_{2}$/Ar의 조성비등이 증착되는 박막의 결정성 및 전기적 특성에 미치는 영향을 고찰하였다. 증착된 ZnO박막은 문헌에 보고된 증착속도보다 높은 값(200-1000$\AA$/min)을 가졌으며, XRD(002)피크의 rocking curve 표준편차가 SAW 필터로의 응용이 가능한 $6^{\circ}$미만의 값을 가졌다. $O_{2}$Ar 유입비가 25%이상의 경우에는 매우 높은 저항치를 가짐을 알 수 있었다. ZnO박막의 두께와 파장의 비, $\frac{h}{\lambda}$=0.25인 조건에서 필터를 제조하였다. 측정한 주파수 응답특성과 이론치에 의해 계산한 주파수응답특성은 비교적 잘 일치함을 알 수 있었다. 이때 중심주파수는 39.08MHz였으며, 상속도는 \ulcorner 2501m/sec, 삽입손실은 약 29dB였다.

  • PDF

니켈기 용사코팅의 스플랫 형성에 관한 연구 (Study on the Splat Formation of Ni-based Thermal Sprayed Coatings)

  • 김균택;이상석;이도형;김영식
    • 동력기계공학회지
    • /
    • 제16권2호
    • /
    • pp.49-53
    • /
    • 2012
  • Thermal spray coatings developed by deposition of splats, it formed by impacting molten droplets on substrates during thermal spray process. In this study, the Ni-based coatings were fabricated by thermal spray process with two different process parameters, oxygen gas flow and acetylene gas flow, with three different levels of each parameters. The morphology of splats and microstructure were observed by optical microscope. Hardness test were performed on the Ni-based coatings. It was confirmed that process parameters of thermal spray process have effect in morphology of splats. These effects also have important implications on the deposit microstructure and properties of Ni-based coatings.

다구찌방법을 이용한 FDM 파라미터의 최적화 (Optimization of the FDM Parameters Using the Taguchi Method)

  • 엄태승;최우천;홍대희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.483-486
    • /
    • 2001
  • Rapid Prototyping(RP) has been widely applied in designing and developing processes a new product. The functional requirements of a rapid prototyping system are high speed and high accuracy, and they depend on the operating parameters, some of which can be set by users. The accuracy is evaluated by dimensional errors and form errors of manufactured pars. A specially designed specimen with various features has been used for the accuracy evaluation. According to the Taguchi experimental design techniques, and orthogonal array of experiments has been set which has the least number of experimental runs to find the parametric effects. A laser scanner is used to obtain the point data of the parts and Surfacer is used to determine the lengths and angles. The conditions for the FDM manufacturing parametrs have been found.

  • PDF

High Impedance Filter를 이용한 RF Loss 최소화 방법에 대한 연구 (RF Loss Minimization Method Using High Impedance Filter for Research)

  • 왕현철;서화일
    • 반도체디스플레이기술학회지
    • /
    • 제19권1호
    • /
    • pp.55-60
    • /
    • 2020
  • This study designed High impedance filter to reduce RF loss to heater heating wire and increase RF current flowing to heater ground wire. Effects such as D / R improvement and process reproducibility could be seen. In addition, RF parameter distribution optimization was possible by understanding the RF path of PE-CVD equipment using Plasma and designing filter.