• Title/Summary/Keyword: Deposition hole

Search Result 216, Processing Time 0.025 seconds

Modeling for Evolution of a 3-dimensional Structure on Semiconductor Substrate (반도체 기판 위의 3차원 구조에 대한 형상 진화 모델링 연구)

  • Jung, Hyun-Su;Won, Tae-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.12
    • /
    • pp.24-28
    • /
    • 2000
  • This paper reports a new calculation method of three dimensional deposeition rate by level set method. To model an advancement of the surface efficiently, we have developed a new iteration method to re-initialize the level set function. For calculating etching and deposition rate by direct flow, we have developed a visibility test module and a refraction and re-sputtering model. Sputter deposition rate with shadow effect and surface refraction is calculated. We report that difference of profiles in cases that sticking coefficient are 1.0 and 0.3. We report that the difference of the deposition rate on bottom of the hole is caused by a difference of visible angle by the shadowing effect.

  • PDF

Effect of Pt Layers on the Photoelectrochemical Properties and Stability of a Copper Oxide/n-Si Electrode (Copper oxide/n-Si 전극의 광전기화학 변환 특성과 안정성에 미치는 Pt 층의 영향)

  • 윤기현;홍석건;강동헌
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.3
    • /
    • pp.263-270
    • /
    • 2000
  • The Pt/copper oxide/n-Si electrodes were fabricated by depositing copper oxide thin film of 500${\AA}$ and very thin Pt layer on the n-type (100) Si substrate. hotoelectrochemical properties and stability profiles of the electrodes were investigated as a function of deposition time of Pt layer. As the deposition time of Pt layer increased up to 10 seconds, the photocurrent and quantum efficiency were increased and then decreased with further depositing time. The better cell stability was observed for the electrode with longer deposition time. The improvements in above photoelectrochemical properties indicate that Pt layer acts as a catalyst layer at electrode/electrolyte interface as well as a protective layer. The decreasing tendency of the photocurrent and efficiency for the electrode with Pt layer deposited above 20 seconds was explained as an increases in probbility of electron-hole pair recombination and also the absorbing photon loss at electrode surface due to the excessive thickness of Pt layer. The results were confirmed by impedance spectroscopy, mutiple cycle voltammograms and microstructural analyses.

  • PDF

Depositon of NiO films for Inorganic Hole-transporting Layer in QD-LED (QD-LED용 무기계 홀전도층 NiO 박막 증착 연구)

  • Chung, Kook-Chae;Oh, Seung-Kun;Kim, Young-Kuk;Choi, Chul-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.330-330
    • /
    • 2009
  • For the high-performance Quantum dots-Light Emitting Diodes in the near-infrared and visible spectrum, adequate electro- and hole-transporting layers are required. The operation lifetimes of typical materials used in OLEDs are very limited and degraded especially by the oxygen and humid atmosphere. In this work, NiO was selected as a possible hole-transporting layer replacing the TPD film used in QD-LEDs. About 40-nm-thick NiO films have been deposited by the rf-sputtering method on various technical substrates such as FTO/glass, ITO/glass, and ITO/PEN. For the balance of charge carriers and quenching consideration, the resistivity of the deposited NiO films was investigated controlling the oxygen in the sputtering gas. NiO films were fabricated at room temperature and about 6mTorr using pure Ar, 2.5%-, 5%-, and 10%-mixed $O_2$ in Ar respectively. We also investigated the rf-power dependence on NiO films in the range of 80 ~ 200 Watts. The resistivity of the samples was varied from highly conductive to resistive state. Also discussed are the surface roughness of NiO films to provide the smooth surface for the deposition of QDs.

  • PDF

Development of Precision Drilling Machine for the Instrumentation of Nuclear Fuels (핵연료계장을 위한 정밀 드릴링장치 개발)

  • Hong, Jintae;Jeong, Hwang-Young;Ahn, Sung-Ho;Joung, Chang-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.223-230
    • /
    • 2013
  • When a new nuclear fuel is developed, an irradiation test needs to be carried out in the research reactor to analyze the performance of the new nuclear fuel. In order to check the performance of a nuclear fuel during the irradiation test in the test loop of a research reactor, sensors need to be attached in and out of the fuel rod and connect them with instrumentation cables to the measuring device located outside of the reactor pool. In particular, to check the temporary temperature change at the center of a nuclear fuel during the irradiation test, a thermocouple should be instrumented at the center of the fuel rod. Therefore, a hole needs to be made at the center of fuel pellet to put in the thermocouple. However, because the hardness and the density of a sintered $UO_2$ pellet are very high, it is difficult to make a small fine hole on a sintered $UO_2$ pellet using a simple drilling machine even though we use a diamond drill bit made by electro deposition. In this study, an automated drilling machine using a CVD diamond drill has been developed to make a fine hole in a fuel pellet without changing tools or breakage of workpiece. A sintered alumina ($Al_2O_3$) block which has a higher hardness than a sintered $UO_2$ pellet is used as a test specimen. Then, it is verified that a precise hole can be drilled off without breakage of the drill bit in a short time.

Numerical Modeling of Very High Frequency Multi Hollow Cathode PECVD (Very High Frequency Multi Hollow Cathode PECVD 장치의 수치모델링)

  • Joo, Jung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.331-340
    • /
    • 2010
  • 3D fluid based numerical modelling is done for a VHF multi hollow cathode array plasma enhanced chemical vapor deposition system. In order to understand the fundamental characteristics of it, Ar plasma is analyzed with a condition of 40 MHz, 100 Vrf and 1 Torr. For hole array of 6 mm diameter and 20 mm inter-hole distance, plasma is well confined within the hole at an electrode gap of 10 mm. The peak plasma density was $5{\times}10^{11}#/cm^3$ at the center of the hole. When the substrate was assumed at ground potential, electron temperature showed a peak at the vicinity of the grounded walls including the substrate and chamber walls. The reaction rate of metastable based two step ionization was 10 times higher than the direct electron impact ionization at this condition. For $H_2$, the spatial localization of discharge is harder to get than Ar due to various pathways of electron impact reactions other than ionization.

Hole Selective Contacts: A Brief Overview

  • Sanyal, Simpy;Dutta, Subhajit;Ju, Minkyu;Mallem, Kumar;Panchanan, Swagata;Cho, Eun-chel;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.7 no.1
    • /
    • pp.9-14
    • /
    • 2019
  • Carrier selective solar cell structure has allured curiosity of photovoltaic researchers due to the use of wide band gap transition metal oxide (TMO). Distinctive p/n-type character, broad range of work functions (2 to 7 eV) and risk free fabrication of TMO has evolved new concept of heterojunction intrinsic thin layer (HIT) solar cell employing carrier selective layers such as $MoO_x$, $WO_x$, $V_2O_5$ and $TiO_2$ replacing the doped a-Si layers on either front side or back side. The p/n-doped hydrogenated amorphous silicon (a-Si:H) layers are deposited by Plasma-Enhanced Chemical Vapor Deposition (PECVD), which includes the flammable and toxic boron/phosphorous gas precursors. Due to this, carrier selective TMO is gaining popularity as analternative risk-free material in place of conventional a-Si:H. In this work hole selective materials such as $MoO_x$, $WO_x$ and $V_2O_5$has been investigated. Recently $MoO_x$, $WO_x$ & $V_2O_5$ hetero-structures showed conversion efficiency of 22.5%, 12.6% & 15.7% respectively at temperature below $200^{\circ}C$. In this work a concise review on few important aspects of the hole selective material solar cell such as historical developments, device structure, fabrication, factors effecting cell performance and dependency on temperature has been reported.

Enhancement of Electrical Properties of Organic Light-Emitting Diodes Using F4-TCNQ Molecule as a Hole-Transport Layer (F4-TCNQ 분자를 정공 수송층에 이용한 유기 발광 소자의 전기적 특성 향상)

  • Na, Su Hwan;Lee, Won Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.11
    • /
    • pp.717-721
    • /
    • 2017
  • We studied the performance enhancement of organic light-emitting diodes (OLEDs) using 2,3,5,6-fluoro-7,7,8,8-tetracyanoquinodimethane ($F_4-TCNQ$) as the hole-transport layer. To investigate how $F_4-TCNQ$ affects the device performance, we fabricated a reference device in an ITO (170 nm)/TPD(40 nm)/$Alq_3$(60 nm)/LiF(0.5 nm)/Al(100 nm) structure. Several types of test devices were manufactured by either doping the $F_4-TCNQ$ in the TPD layer or forming a separate $F_4-TCNQ$ layer between the ITO anode and TPD layer. N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine (TPD), tri(8-hydroxyquinoline) aluminum ($Alq_3$), and $F_4-TCNQ$ layers were formed by thermal evaporation at a pressure of $10_{-6}$ torr. The deposition rate was $1.0-1.5{\AA}/s$ for TPD and $Alq_3$. The LiF was subsequently thermally evaporated at a deposition rate of $0.2{\AA}/s$. The performance of the OLEDs was considered with respect to the turn-on voltage, luminance, and current efficiency. It was found that the use of $F_4-TCNQ$ in OLEDs enhances the performance of the device. In particular, the use of a separate layer of $F_4-TCNQ$ realizes better device performance than other types of OLEDs.

Thermohydromechanical Stability Study on the Joint Characteristics and Depth Variations in the Region of an Underground Radwaste Repository (절리 발달 특성 및 심도 변화에 의한 방사성폐기물 처분장 주변영역에서의 열수리역학적 안정성 연구)

  • Kim, Jhinwung;Daeseok Bae;Park, Chongwon
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.153-168
    • /
    • 2003
  • The objective of this present study is to understand long term(500 years) thermohydromechanical interaction behavior in the vicinity of a repository cavern on the joint location and repository depth variations. The model includes a saturated discontinuous granitic rock mass, PWR spent nuclear fuel in a disposal canister surrounded with compacted bentonite inside a deposition hole, and mixed bentonite backfilled in the rest of the space within a repository cavern. It is assumed that two joint sets exist within the model. Joint set 1 includes joints of 56$^{\circ}$ dip angle, spaced at 20 m, and joint set 2 is in the perpendicular direction to joint set 1 and includes joints of 34$^{\circ}$ dip angle, spaced at 20 m. In order to understand the behavior change on the joint location variations, 5 different models of 500m in depth are analyzed, and additional 3 different models of 1000 m in depth are analyzed to understand the effect of depth variation.

Fabrication and Characterization of Blue OLED using TMP-BiP Host and DJNBD-1 Dopant (TMP-BiP 호스트와 DJNBD-1 도펀트를 이용한 청색 OLED의 제작과 특성평가)

  • Chang, Ji-Geun;Ahn, Jong-Myoung;Shin, Sang-Baie;Chang, Ho-Jung;Gong, Su-Choel;Shin, Hyun-Kwan;Gong, Myung-Sun;Lee, Chil-Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.2 s.19
    • /
    • pp.19-23
    • /
    • 2007
  • The blue emitting OLEDs using TMP-BiP[(4'-Benzoylferphenyl-4-yl)phenyl-methanone-Diethyl(biphenyl-4-ymethyl) phosphonate] host and DJNBD-1 dopant have been fabricated and characterized. In the device fabrication, 2-TNATA [4,4',4"-tris(2-naphthylphenyl-phenylamino)-triphenylamine] as a hole injection material and NPB [N,N'-bis(1-naphthyl)N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as a hole transport material were deposited on the ITO(indium tin oxide)/glass substrate by vacuum thermal evaporation method. Followed by the deposition, blue color emission layer was deposited using TMP-BiP as a host material and DJNBD-1 as a dopant. Finally, small molecule OLEDs with structure of $ITO/2-TNATA/NPB/TMP-BiP:DJNBD-l/Alq_3/LiF/Al$ were obtained by in-situ deposition of $Alq_3$, LiF and Al as the electron transport material, electron injection material and cathode, respectively. The effect of dopant into host material of the blue OLEDs was studied. The blue OLEDs with DJNBD-1 dopant showed that the maximum current and luminance were found to be about 34 mA and $8110\;cd/m^2$ at 11 V, respectively. In addition, the color coordinate was x=0.17, y=0.17 in CIE color chart, and the peak emission wavelength was 440 nm. The maximum current efficiency of 2.15 cd/A at 7 V was obtained in this experiment.

  • PDF

A Numerical Analysis to Estimate Disposal Spacing and Rock Mass Condition for High Efficiency Repository Based on Temperature Criteria of Bentonite Buffer (벤토나이트 완충재 설계 기준 온도에 따른 고효율 처분시스템 처분 간격 및 암반 조건 산정을 위한 수치해석적 연구)

  • Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop;Cho, Dongkeun
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.289-308
    • /
    • 2021
  • This study conducts coupled thermo-hydro-mechanical numerical modeling to investigate the maximum temperature and conditions for securing mechanical stability of the high-level radioactive waste repository when temperature criteria of bentonite buffer are 100℃ and 125℃, respectively. In case of temperature criterion of buffer as 100℃, the maximum temperatures at the interface between canister and buffer are calculated to be 99.4℃ and 99.8℃, respectively for a case with disposal tunnel spacing of 40 m and deposition hole spacing of 5.5 m and for the other case with disposal tunnel spacing of 30 m and deposition hole spacing of 6.5 m. In case of temperature criterion of buffer as 125℃, spacings of disposal tunnel and deposition hole could be decreased to 30 m and 4.5 m, respectively, which reduces the disposal area up to 55% compared to the disposal area of KRS+. According to analysis of mechanical stability for various disposal spacings, RMR of rock mass for KRS+ should be larger than 72.4 which belongs to good rock in RMR classification to prevent failure of rock mass. As disposal spacing is decreased, required RMR of rock mass is increased. In order to prevent failure of rock mass for a case with disposal tunnel spacing of 30 m and deposition hole spacing of 4.5 m, RMR larger than 87.3 is needed. However, mechanical stability of the repository is secured for all cases with RMR over 75 considering the enhancement of rock strength due to confining stress induced by swelling of the bentonite buffer and backfill.