• Title/Summary/Keyword: Deposition during growth

Search Result 291, Processing Time 0.032 seconds

Electrochemical Deposition of Copper on Polymer Fibers

  • Lim, Seung-Lin;Kim, Jaecheon;Park, Jongdeok;Kim, Sohee;Lee, Jae-Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.132-138
    • /
    • 2016
  • In this study, we report the fabrication of functional complex fibers, which have been studied widely globally for numerous applications. Here, we fabricated conductive complex fibers with antibacterial properties by coating metal ions on the surface of plastic (polypropylene) fibers using the electroless and electrochemical deposition. First, we polished the polypropylene melt-blown fiber surface and obtained an absorbing Pd seed layer on its surface. Subsequently, we substituted the Pd with Cu. Bis-3-sulfopropyl-disulfide disodium salt (SPS), polyethylene glycol (PEG), and ethylene thiourea (ETU) were used as the brightener, carrier, and leveler, respectively for the electroplating. We focused on most achieving the stable plating condition to remove dendrites, which are normally during electroplating metals so that smooth layer is formed on the fiber surface. The higher the amount of SPS, the higher was the extent of irregular plate-like growth. Many irregularities in the form of round spheres were observed with increase in the amount of PEG and ETU. Hence, when the additives were used separately, a uniform coating could not be obtained. A stable coating was obtained when the three additives were combined and a uniform 5-9 μm thick copper layer with a stable morphology could be obtained around the fiber. We believe that our results can be applied widely to obtain conductive fibers with antibacterial properties and are useful in aiding research on conductive lightweight composite fibers for application in information technology and robotics.

Effects of Current Density and Organic Additives on via Copper Electroplating for 3D Packaging (3D패키지용 Via 구리충전 시 전류밀도와 유기첨가제의 영향)

  • Choi, Eun-Hey;Lee, Youn-Seoung;Rha, Sa-Kyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.374-378
    • /
    • 2012
  • In an effort to overcome the problems which arise when fabricating high-aspect-ratio TSV(through silicon via), we performed experiments involving the void-free Cu filling of a TSV(10~20 ${\mu}m$ in diameter with an aspect ratio of 5~7) by controlling the plating DC current density and the additive SPS concentration. Initially, the copper deposit growth mode in and around the trench and the TSV was estimated by the change in the plating DC current density. According to the variation of the plating current density, the deposition rate during Cu electroplating differed at the top and the bottom of the trench. Specifically, at a current density 2.5 mA/$cm^2$, the deposition rate in the corner of the trench was lower than that at the top and on the bottom sides. From this result, we confirmed that a plating current density 2.5 mA/$cm^2$ is very useful for void-free Cu filling of a TSV. In order to reduce the plating time, we attempted TSV Cu filling by controlling the accelerator SPS concentration at a plating current density of 2.5 mA/$cm^2$. A TSV with a diameter 10 ${\mu}m$ and an aspect ratio of 7 was filled completely with Cu plating material in 90 min at a current density 2.5 mA/$cm^2$ with an addition of SPS at 50 mg/L. Finally, we found that TSV can be filled rapidly with plated Cu without voids by controlling the SPS concentration at the optimized plating current density.

Soil-to-Plant Transfer Factors and Migration of Radionuclides Applied onto Soli during Growing Season of Cucumber (오이의 재배기간중 처리한 방사성 핵종의 토양;작물체간 전이계수 및 지하이동)

  • Choi, Yong-Ho;Park, Hyo-Kook;Kim, Sang-Bog;Choi, Geun-Sik;Lee, Jeong-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.4
    • /
    • pp.304-310
    • /
    • 1997
  • In greenhouse, a mixed solution of Mn-54, Co-60, Sr-85 and Cs-137 was applied to the soil of culture boxes 2 days before sowing cucumber and at 4 different times during its growth for measuring their transfer factors (TFs) for fruit and migration in soil. TFs varied with radionuclide, application time and harvest time by factor of up to about 60. Variations in TFs with application time showed different patterns among radionuclides. TFs decreased on the whole in the order of Sr-85 > Mn-54 > Co-60 > Cs-137. TFs of Mn-54, Co-60 and Cs-137 mixed with topsoil before sowing were a little higher than those for the soil-surface application made at an early growth stage while no difference in Sr-85 TF was found. After harvest, soil concentrations of the radionuclides applied at an early growth stage were examined. They decreased with increasing soil depth and 80${\sim}$99% of the radioactivity remained in the top 3cm. Soil pemeation of the radionuclides migration decreased in the order of Sr-85 > Mn-54 > Co-60 > Cs-137. The present data can be utilized in estimating radionuclide concentration in cucumber fruit, taking proper measures for its harvest and consumption and designing the best way of soil decontamination following an radioactive deposition during the cucummber growing season.

  • PDF

Changes of symphysis morphology after chincup treatment (이모장치 착용 후 하악 이부의 헝태변화)

  • Kang, Sun;Park, Dong-Cheol;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.30 no.1 s.78
    • /
    • pp.33-41
    • /
    • 2000
  • Although it is well known that the chincup, used to correct a skeletal class III malocclusion in growing children, reduce the mandibular prognathism by arresting the growth of the mandibular length and rotating the mandible posteroinferiorly, the majority of the studies about chincup is focused on condylar head that plays an Important role in mandibular growth. The aim of this study was to evaluate the morphologic change of the mandibular symphysis where extraoral force is applied directly during chincup treatment. The data lot this study were obtained from lateral cephalometric radiographs of 62 growing children(chincup group:32, control group:30) with mixed dentition who had been accepted lot the orthodontic treatment at Chonbuk National University Dental Hospital. The results were as follows : 1. Symphysis height was increased both in chincup therapy group and control group during treatment. Symphysis depth was decreased or maintained the initial values in chin cup therapy group, whereas increased in control group. Posterior symphysis depth was decreased both in chin cup therapy group and control group, but anterior svmphysis detph was increased in control group, whereas decreased in chincup therapy group. 2. Chin depth and chin curvature were increased in control group, whereas maintained or decreased in chincup therapy group during treatment. Chin angle, menton ang1e and symphysis angle were decreased in control group, whereas increased in chincup therapy group. It suggested that bone deposition in pogonion area that occur normally with mandibular growth was supressed by direct contact of chincup. 3. When growing children wear chincup, symphysis morphology was maintained due to inhibition of forward growth at mandibular symphysis. It may be due to the suppression of bone deposition in anterior part of symphysis.

  • PDF

Soil-to-Plant Transfer of $^{54}Mn,\;^{60}Co,\;^{85}Sr$ and $^{137}Cs$ Deposited during the Growing Season of Potato (감자의 재배기간 중 토양에 침적한 $^{54}Mn,\;^{60}Co,\;^{85}Sr,\;^{137}Cs$의 작물체로의 전이)

  • Choi, Yong-Ho;Lim, Kwang-Muk;Jun, In;Keum, Dong-Kwon
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.3
    • /
    • pp.105-112
    • /
    • 2008
  • To measure the soil-to-plant transfer factors ($TF_a,\;m^2\;kg^{-1}$-fresh) of radionuclides deposited during the growing season of potato, a radioactive solution containing $^{54}Mn,\;^{60}Co,\;^{85}Sr$ and $^{137}Cs$ was applied to the soil surfaces in soil boxes 2 d before seeding and three different times during the plant growth. For the pre-seeding application (PSA), radionuclides were mixed with the topsoil (loamy sand and 5.2 in pH). The plant parts investigated were leaves, stems, tuber skin and tuber flesh. The $TF_a$ values of $^{54}Mn,\;^{60}Co,\;^{85}Sr$ and $^{137}Cs$ from the PSA were in the ranges of $1.9{\times}10^{-4}{\sim}1.5{\times}10^{-2}$, $1.8{\times}10^{-4}{\sim}7.5{\times}10^{-4}$, $4.0{\times}10^{-4}{\sim}1.6{\times}10^{-2}$, $1.5{\times}10^{-4}{\sim}3.9{\times}10^{-4}$ respectively, for different plant parts. The TFa values from the growing-time applications were on the whole a few times lower than those from the PSA. For $^{54}Mn,\;^{85}Sr$ and $^{137}Cs$, the $TF_a$ values from the early- or middle-growth-stage application were higher than those from the late-growth-stage application, whereas the opposite was true for $^{60}Co$. Leaves and tuber flesh had the highest and lowest $TF_a$ values, respectively, in most cases. The total uptake from soil by the four plant parts was in the range of $0.05{\sim}3.16%$. In the third year following the PSA, the $TF_a$ values of $^{54}Mn,\;^{60}Co$ and $^{137}Cs$ were $11{\sim}25%$, $21{\sim}25%$ and $38{\sim}67%$ of those in the first year, respectively, depending on the plant parts. The present results can be used for estimating the radiological impact of an acute radioactive deposition during the growing season of potato and for testing the validity of relevant food-chain models.

Retardation of Massive Spalling by Palladium Layer Addition to Surface Finish (팔라듐 표면처리를 통한 Massive Spalling 현상의 억제)

  • Lee, Dae-Hyun;Chung, Bo-Mook;Huh, Joo-Youl
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.1041-1046
    • /
    • 2010
  • The reactions between a Sn-3.0Ag-0.5Cu solder alloy and electroless Ni/electroless Pd/immersion Au (ENEPIG) surface finishes with various Pd layer thicknesses (0, 0.05, 0.1, 0.2, $0.4{\mu}m$) were examined for the effect of the Pd layer on the massive spalling of the $(Cu,Ni)_6Sn_5$ layer during reflow at $235^{\circ}C$. The thin layer deposition of an electroless Pd (EP) between the electroless Ni ($7{\mu}m$) and immersion Au ($0.06{\mu}m$) plating on the Cu substrate significantly retarded the massive spalling of the $(Cu,Ni)_6Sn_5$ layer during reflow. Its retarding effect increased with an increasing EP layer thickness. When the EP layer was thin (${\leq}0.1{\mu}m$), the retardation of the massive spalling was attributed to a reduced growth rate of the $(Cu,Ni)_6Sn_5$ layer and thus to a lowered consumption rate of Cu in the bulk solder during reflow. However, when the EP layer was thick (${\geq}0.2{\mu}m$), the initially dissolved Pd atoms in the molten solder resettled as $(Pd,Ni)Sn_4$ precipitates near the solder/$(Cu,Ni)_6Sn_5$ interface with an increasing reflow time. Since the Pd resettlement requires a continuous Ni supply across the $(Cu,Ni)_6Sn_5$ layer from the Ni(P) substrate, it suppressed the formation of $(Ni,Cu)_3Sn_4$ at the $(Cu,Ni)_6Sn_5/Ni(P)$ interface and retarded the massive spalling of the $(Cu,Ni)_6Sn_5$ layer.

Growth and Properties of CrNx/TiNy/Al Based on N2 Gas Flow Rate for Solar Thermal Applications

  • Ju, Sang-Jun;Jang, Gun-Eik;Jang, Yeo-Won;Kim, Hyun-Hoo;Lee, Cheon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.146-149
    • /
    • 2016
  • The CrN/TiN/Al thin films for solar selective absorber were prepared by dc reactive magnetron sputtering with multi targets. The binary nitride CrN layer deposited with change in N2 gas flow rates. The gas mixture of Ar and N2 was an important parameter during sputtering deposition because the metal volume fraction (MVF) was controlled by the N2 gas flow rate. In this study, the crystallinity and surface properties of the CrN/TiN/Al thin films were estimated by X-ray diffraction (XRD), atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The composition and depth profile of thin films were investigated using Auger electron spectroscopy (AES). The absorptance and reflectance with wavelength spectrum were recorded by UV-Vis-NIR spectrophotometry at a range of 300~1,100 nm.

Electrical Characteristics of $(Ba,Sr)TiO_3/RuO_2$ Thin films

  • Park Chi-Sun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.63-70
    • /
    • 2004
  • The structural, electrical properties of $(Ba, Sr)TiO_3[BSTO]/RuO_2$ thin films were examined by the addition of amorphous BSTO layer between crystlline BSTO film and $RuO_2$ substrate. We prepared BSTO films with double-layered structure, that is, amorphous layers deposited at $60^{\circ}C$ and crystalline films. Crystalline films were prepared at 550 on amorphous BSTO layer. The thickness of the amorphous layers was varied from 0 to 170 nm. During the deposition of crystalline films, the crystallization of the amorphous layers occurred and the structure was changed to circular while crystalline BSTO films showed columnar structure. Due to insufficient annealing effect, amorphous BSTO phase was observed when the thickness of the amorphous layers exceeded 30 nm. Amorphous BSTO layer could also prevent the formation of oxygen deficient region in $RuO_2$ surface. Leakage current of total BSTO films decreased with increasing amorphous layer thickness due to structural modifications. Dielectric constant showed maxi-mum value of 343 when amorphous layer thickness was 30 nm at which the improvement by grain growth and the degradation by amorphous phase were balanced.

  • PDF

Properties of $ Y_2O_3$ Thin Films Prepared by ICBD Method (ICBD 법에 의한 $ Y_2O_3$박막특성에 관한 연구)

  • Jeon, J. S.;Moon, J.;Lee, S. I.;Shim, T. E.;Hwang, J. N.
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.3
    • /
    • pp.245-250
    • /
    • 1996
  • $Y_2O_3$ thin film on si(100) was successfully grown by ionized cluster beam(ICBD) technique at substrate temperature of around $500^{\circ}C$ and pressure of ~$10^{-5}$Torr.To prevent the oxidation of Si substrae, a very thin yttrium layer was deposited on Si before reactive depositing of oxygen and yttrium source. In asdeposited stage, b.c.c and h.c.p strucutres of $Y_2O_3$ were observed from S-ary analysis. From the observation of spots and ring patterns in selected area diffractin(SAD) patterns. crystallane formation and growth could be proceeded during the deposition. $Y_2O_3$/mixed layer/$SiO_2=170\AA/50\AA/10\AA$ structure were verified by high resolution transmition electron imcroscopy(HRTEM) image, and the formation of amorphous layer of SiO2 was discussed . Electricla charateristics of the film were also investigated . In as-deposited Pt/$Y_2O_3$/Si sturcuture, leakage current was less than $10^{-6}$A/$\textrm{cm}^2$ at 7MV/cm strength.

  • PDF

Electrical Properties of SrRuO3 Thin Films with Varying c-axis Lattice Constant

  • Chang, Young-J.;Kim, Jin-I;Jung, C.U.
    • Journal of Magnetics
    • /
    • v.13 no.2
    • /
    • pp.61-64
    • /
    • 2008
  • We studied the effect of the variation of the lattice constant on the electrical properties of $SrRuO_3$ thin films. In order to obtain films with different volumes, we varied the substrate temperature and oxygen pressure during the growth of the films on $SrTiO_3$ (001) substrates. The films were grown using a pulsed laser deposition method. The X-ray diffraction patterns of the grown films at low temperature and low oxygen pressure indicated the elongation of the c-axis lattice constant compared to that of the films grown at a higher temperature and higher oxygen pressure. The in-plane strain states are maintained for all of the films, implying the expansion of the unit-cell volume by the oxygen vacancies. The variation of the electrical resistance reflects the temperature dependence of the resistivity of the metal, with a ferromagnetic transition temperature inferred form the cusp of the curve being observed in the range from 110 K to 150 K. As the c-axis lattice constant decreases, the transition temperature linearly increases.