• Title/Summary/Keyword: Deposition Process

Search Result 2,733, Processing Time 0.032 seconds

Investigation into the Effects of Process Parameters of DED Process on Deposition and Residual Stress Characteristics for Remanufacturing of Mechanical Parts (기계 부품 재제조를 위한 DED 공정 조건에 따른 적층 및 잔류응력 특성 분석)

  • Kim, D.A.;Lee, K.K.;Ahn, D.G.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.109-118
    • /
    • 2021
  • Recently, there has been an increased interest in the remanufacturing of mechanical parts using metal additive manufacturing processes in regards to resource recycling and carbon neutrality. DED (directed energy deposition) process can create desired metallic shapes on both even and uneven substrate via line-by-line deposition. Hence, DED process is very useful for the repair, retrofit and remanufacturing of mechanical parts with irregular damages. The objective of the current paper is to investigate the effects DED process parameters, including the effects of power and the scan speed of the laser, on deposition and residual stress characteristics for remanufacturing of mechanical parts using experiments and finite element analyses (FEAs). AISI 1045 is used as the substrate material and the feeding powder. The characteristic dimensions of the bead shape and the heat affected zone (HAZ) for different deposition conditions are obtained from the experimental results. Efficiencies of the heat flux model for different deposition conditions are estimated by the comparison of the results of FEAs with those of experiments in terms of the width and the depth of HAZ. In addition, the influence of the process parameters on residual stress distributions in the vicinity of the deposited region is investigated using the results of FEAs. Finally, a suitable deposition condition is predicted in regards to the bead formation and the residual stress.

A Preliminary Study on the Lamination Characteristics of Inconel 718 Superalloy on S45C Structural Steel using LENS Process (LENS 공정을 이용한 Inconel 718 초합금의 S45C 구조용강 위 적층 특성 고찰에 관한 기초 연구)

  • Kim, Hyun-Sik;Lee, Hyub;Ahn, Dong-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.16-24
    • /
    • 2021
  • A laser-engineered net shaping (LENS) process is a representative directed energy deposition process. Deposition characteristics of the LENS process are greatly dependent on the process parameters. The present paper preliminarily investigates deposition characteristics of Inconel 718 superalloy on S45C structural steel using a LENS process. The influence of process parameters, including the laser power and powder feed rate, on the characteristics of the bead formation and the dilution in the vicinity of the deposited region is examined through repeated experiments. A processing map and feasible deposition conditions are estimated from viewpoints of the aspect ratio, defect formation, and the dilution rate of the deposited bead. Finally, an appropriate deposition condition considering side angle, deposition ratio, and buy-to-fly (BTF) is predicted.

Reduction of Plasma Process Induced Damage during HDP IMD Deposition

  • Kim, Sang-Yung;Lee, Woo-Sun;Seo, Yong-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.3
    • /
    • pp.14-17
    • /
    • 2002
  • The HDP (High Density Plasma) CVD process consists of a simultaneous sputter etch and chemical vapor deposition. As CMOS process continues to scale down to sub- quarter micron technology, HDP process has been widely used fur the gap-fill of small geometry metal spacing in inter-metal dielectric process. However, HBP CVD system has some potential problems including plasma-induced damage. Plasma-induced gate oxide damage has been an increasingly important issue for integrated circuit process technology. In this paper, thin gate oxide charge damage caused by HDP deposition of inter-metal dielectric was studied. Multiple step HDP deposition process was demonstrated in this work to prevent plasma-induced damage by introducing an in-situ top SiH$_4$ unbiased liner deposition before conventional deposition.

The Influence of Parameters Controlling Beam Position On-Sample During Deposition Patterning Process with Focused Ion Beam (빔 위치 관련 제어인자가 집속이온빔 패턴 증착공정에 미치는 영향)

  • Kim, Joon-Hyun;Song, Chun-Sam;Kim, Youn-Jea
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.209-216
    • /
    • 2008
  • The application of focused ion beam (FIB) depends on the optimal interaction of the operation parameters between operating parameters which control beam and samples on the stage during the FIB deposition process. This deposition process was investigated systematically in C precursor gas. Under the fine beam conditions (30kV, 40nm beam size, etc), the effect of considered process parameters - dwell time, beam overlap, incident beam angle to tilted surface, minimum frame time and pattern size were investigated from deposition results by the design of experiment. For the process analysis, influence of the parameters on FIB-CVD process was examined with respect to dimensions and constructed shapes of single and multi- patterns. Throughout the single patterning process, optimal conditions were selected. Multi-patterning deposition were presented to show the effect of on-stage parameters. The analysis have provided the sequent beam scan method and the aspect-ratio had the most significant influence for the multi-patterning deposition in the FIB processing. The bitmapped scan method was more efficient than the one-by-one scan type method for obtaining high aspect-ratio (Width/Height > 1) patterns.

Modeling of Deposition Height in the Uncontrolled Laser Aided Direct Metal Deposition Process (비 제어 상태의 레이저 직접 금속성형공정에서 적층높이의 모델링)

  • Chang, Yoon-Sang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.128-134
    • /
    • 2008
  • Models of the deposition heights in the uncontrolled laser aided direct metal deposition process are constructed for the enhancement of the process integrity. Linear and non-linear statistical models as well as fuzzy model are utilized as the modeling methods. The predictability of the models are evaluated with the values of the sum of square error. The algorithm to use the models in the feedback controlled system is suggested to increase the deposition height accuracy within a layer.

  • PDF

The performance of large-area organic solar cells by spray deposition process

  • Park, Seon-Yeong;Park, Dong-Seok;Kim, Do-Geun;Kim, Jong-Guk;Kim, Ju-Hyeon;Gang, Jae-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.291-291
    • /
    • 2010
  • Organic solar cells have attracted much interest due to the potential advantage of the lightness, simple solution processing and flexibility. Until recently, the focus of organic solar cells research has been on optimization of material processing to improve the power conversion efficiency. However, area scaling is an important position for alternative to the market dominating solar cells. Spray deposition technologies have advantage of less material wastage and possibility of large scale photoactive area coating when compared with spin coating process. We investigated the performance of organic solar cells as a function of active area using two types of deposition process. The commonly used process is spin coating which can be fabricated organic materials deposition for devices. Spray deposition process compare with spin coating for large-area organic solar cells. The spray deposition organic layer shows excellent performance up to the active area of $4\;cm^2$ with the PCE of ~3.0 % under AM.1.5 simulated illumination with an intensity of $100mW/cm^2$. This indicates that the spray deposition process can be used as a mass production process for evaluating large-area organic solar cells.

  • PDF

Influence of Process Condition on Contact Resistance in WSix Deposition (WSix 증착에서 공정조건이 contact 저항에 미치는 영향)

  • 정양희;강성준;강희순
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.279-282
    • /
    • 2002
  • In this paper, we discuss influence of process condition on contact resistance in WSix deposition process. In the WSix deposition process, we confirmed that word line to bit line contact resistance(WBCR) due to temperature of word line WSix deposition among various process condition split experiment. RTP treatment, d-poly ion implantation dose and thickness was estimated a little bit influence on contact resistance. Also, life time of shower head in the process chamber for WSix deposition related to contact resistance. The results obtained in this study are applicable to process control and electrical characteristics for high reliability and high density DRAM's.

  • PDF

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF

Solar Cell Efficiency Improvement using a Pre-deposition Temperature Optimization in The Solar Cell Doping Process (도핑 공정에서의 Pre-deposition 온도 최적화를 이용한 Solar Cell 효율 개선)

  • Choi, Sung-Jin;Yoo, Jin-Su;Yoo, Kwon-Jong;Han, Kyu-Min;Kwon, Jun-Young;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.244-244
    • /
    • 2010
  • Doping process of crystalline silicon solar cell process is very important which is as influential on efficiency of solar. Doping process consists of pre -deposition and diffusion. Each of these processes is important in the process temperature and process time. Through these process conditions variable, p-n junction depth can be controled to low and high. In this paper, we studied a optimized doping pre-deposition temperature for high solar cell efficiency. Using a $200{\mu}m$ thickness multi-crystalline silicon wafer, fixed conditions are texture condition, sheet resistance($50\;{\Omega}/sq$), ARC thickness(80nm), metal formation condition and edge isolation condition. The three variable conditions of pre-deposition temperature are $790^{\circ}C$, $805^{\circ}C$ and $820^{\circ}C$. In the $790^{\circ}C$ pre-deposition temperature, we achieved a best solar cell efficiency of 16.2%. Through this experiment result, we find a high efficiency condition in a low pre-deposition temperature than the high pre-deposition temperature. We optimized a pre-deposition temperature for high solar cell efficiency.

  • PDF

A Novel OLED Inspection Process Method with Simultaneous Measurement for Standard and Deposition Pattern (기준패턴과 증착패턴의 동시 측정을 통한 OLED 공정 검사 방법)

  • Kwak, Byeongho;Cheoi, Kyungjoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.4
    • /
    • pp.63-70
    • /
    • 2019
  • The subject of the simultaneous measuring system of base pattern and deposition pattern is a new research topic on a defect inspection of OLED. In this paper, we propose a new OLED inspection method that simultaneously measures standard and deposition pattern images. This method reduces unnecessary processes and tac time during OLED inspection. For an additional reduction of the tac time during pattern measurement, the ROI was configured to measure only in the designated ROI area instead of measuring the entire area of an image. During the ROI set-up, the value of effective deposition pattern area is included so that if the deposition pattern is out of the ROI zone, it would be treated as a defect before measuring the size and center point of the pattern. As a result, the tac time and inspection process could be shortened. The proposed method also could be applied to the OLED manufacturing process. Production of OLED could be increased by reducing tac time and inspection process.