• Title/Summary/Keyword: Deposition Chamber

Search Result 340, Processing Time 0.039 seconds

New SMOLED Deposition System for Mass Production

  • Lee, J.H.;Kim, C.W.;Choi, D.K.;Kim, D.S.;Bae, K.B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.407-410
    • /
    • 2003
  • We will introduce our new concept deposition system for SMOLED manufacturing in this conference. This system is designed to deposit organic and metal material to downward to overcome the limit of substrate size and process tact time hurdle for OLED mass production, and is organized with organic deposition chamber, substrate pre-cleaning chamber, metal deposition chamber and encapsulation system. These entire process chambers are integrated with linear type substrate transfer system. We also compare our new SMOLED manufacturing system with conventional vacuum deposition systems, and show basic organic thin film property data, organic material deposition property data, and basic device property.

  • PDF

Numerical Simulation of Deposition Chamber for Aerosol Nanoparticles Upward 300 mm Wafer (300 mm 웨이퍼 위의 에어로졸 나노 입자의 증착 장비 개발을 위한 수치 해석적 연구)

  • Ahn, Kang-Ho;Ahn, Jin-Hong;Lee, Kwan-Soo;Lim, Kwang-Ok;Kang, Yoon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.1 s.10
    • /
    • pp.49-53
    • /
    • 2005
  • The nanoparticle deposition chamber, which is used for quantum dot semiconductor memory applications, is designed by means of numerical simulation. In this research, the numerical simulations for deposition chamber were performed by commercial software, FLUENT. The deposition of nanoparticles is calculated by diffusion force, thermophoresis and electrophoresis of particles. As a results, when the diffusion force was considered, the most of particles deposited in the wall of deposition chamber. But as considering thermophoresis and electrophoresis of particles, the particles were deposited wafer surface, perfectly.

  • PDF

Optimization of the Material and Structure of Component Parts for Reducing the Number of Impurity Particles in CVD Process

  • Kim, Won Kyung;Woo, Ram;Roh, Jong Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.3
    • /
    • pp.277-283
    • /
    • 2019
  • We have examined minimization of the number of impurity particles by replacing the load-lock chamber materials of the chemical vapor deposition equipment through optimization of the pumping method in the deposition chamber. In order to reduce the number of impurity particles in the chamber, the load-lock spacer material was changed from monomer casting nylon to Torlon. Furthermore, we controlled the pumping speed and number of pumping ports, which resulted in a reduction in the impurity particle generation from 2.67% to 0.52%. This study revealed that the selection of the material for the parts of a chemical vapor deposition chamber can minimize particle generation, thereby presenting a method of optimization method of the chemical vapor deposition chamber.

Prevention of P-i Interface Contamination Using In-situ Plasma Process in Single-chamber VHF-PECVD Process for a-Si:H Solar Cells

  • Han, Seung-Hee;Jeon, Jun-Hong;Choi, Jin-Young;Park, Won-Woong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.204-205
    • /
    • 2011
  • In thin film silicon solar cells, p-i-n structure is adopted instead of p/n junction structure as in wafer-based Si solar cells. PECVD is a most widely used thin film deposition process for a-Si:H or ${\mu}c$-Si:H solar cells. For best performance of thin film silicon solar cell, the dopant profiles at p/i and i/n interfaces need to be as sharp as possible. The sharpness of dopant profiles can easily achieved when using multi-chamber PECVD equipment, in which each layer is deposited in separate chamber. However, in a single-chamber PECVD system, doped and intrinsic layers are deposited in one plasma chamber, which inevitably impedes sharp dopant profiles at the interfaces due to the contamination from previous deposition process. The cross-contamination between layers is a serious drawback of a single-chamber PECVD system in spite of the advantage of lower initial investment cost for the equipment. In order to resolve the cross-contamination problem in single-chamber PECVD systems, flushing method of the chamber with NH3 gas or water vapor after doped layer deposition process has been used. In this study, a new plasma process to solve the cross-contamination problem in a single-chamber PECVD system was suggested. A single-chamber VHF-PECVD system was used for superstrate type p-i-n a-Si:H solar cell manufacturing on Asahi-type U FTO glass. A 80 MHz and 20 watts of pulsed RF power was applied to the parallel plate RF cathode at the frequency of 10 kHz and 80% duty ratio. A mixture gas of Ar, H2 and SiH4 was used for i-layer deposition and the deposition pressure was 0.4 Torr. For p and n layer deposition, B2H6 and PH3 was used as doping gas, respectively. The deposition temperature was $250^{\circ}C$ and the total p-i-n layer thickness was about $3500{\AA}$. In order to remove the deposited B inside of the vacuum chamber during p-layer deposition, a high pulsed RF power of about 80 W was applied right after p-layer deposition without SiH4 gas, which is followed by i-layer and n-layer deposition. Finally, Ag was deposited as top electrode. The best initial solar cell efficiency of 9.5 % for test cell area of 0.2 $cm^2$ could be achieved by applying the in-situ plasma cleaning method. The dependence on RF power and treatment time was investigated along with the SIMS analysis of the p-i interface for boron profiles.

  • PDF

Particle Deposition Characteristics with Electrostatic Effect on Semiconductor Wafers (정전효과를 고려한 반도체 웨이퍼의 입자침착 특성)

  • Lee, Kun-Hyung;Chae, Seung-Ki;Moon, Young-June
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.779-785
    • /
    • 2006
  • Particle transport and deposition characteristics on semiconductor wafers inside the chamber were experimentally investigated via a particle generation & deposition system and a wafer surface scanner. Especially the relation between particle size($0.083{\sim}0.495{\mu}m$) and particle deposition velocity with ESA(Electrostatic Attraction) effect was studied. Spot deposition technique with the deposition system using nozzle type outlets of the chamber was newly conducted to derive particle deposition velocity and all experiment results were compared with the previous study and were in a good agreement as well.

  • PDF

The Effect of Chamber Pressure and Nitrogen Flow Rate on Deposition Characteristics of $(Ni_{0.8}Fe_{0.2})_{20}Ag_{80}$ Thin Films

  • Oh, T.S.;Choo, W.K.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.275-280
    • /
    • 1997
  • We have investigated the deposition characteristics of (Ni0.8Fe0.2)20Ag80 thin films as a function of chamber pressure and nitrogen flow rate with scanning electron microscopy(SEM), atomic force microscopy(AFM), XRD and $\alpha$-step. The deposition rate of these film is decreased with increasing the chamber pressure and the nitrogen flow rate. With raising the chamber pressure, the growth mode of thin film is changed from island growth to columnar one, which is probably due to energy of atom. Contrary, the nitrogen flow rate is raised, growth mode is changed from columnar to island one. According to the XRD patterns, the preferred orientation is inhibited as the nitrogen flow rate is kept above 10 sccm, but that is nearly independent on the chamber pressure. When the chamber pressure decrease or the nitrogen flow rate increase, phase separation into permoally and silver is occured.

  • PDF

Structure of Deposition Chamber using Belt Source Evaporation Techniques in AMOLED Manufacturing

  • Hwang, Chang-Hun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.186-189
    • /
    • 2007
  • The organic deposition chamber has been developed using belt source evaporation techniques for the first time. The deposition chamber is consisted of the belt source, organic vapor source, and the mask alignment assembly. The rollers operate for the thin metal belt to continuously move with the automatic tension control. It has been proved for the belt source evaporation easy to operate and the alignment of the substrate/shadow mask becomes so simple to use in AMOLED manufacturing industry.

  • PDF

Construction of CVD by using RF Helicon Plasma (RF 헬리콘 플라즈마를 이용한 회학기상 증착기의 제작)

  • 신재균;현준원;박상규
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.8
    • /
    • pp.607-612
    • /
    • 1998
  • RF HPCVD(Helicon Plasma Chemical Vapor Deposition) has been successfully constructed for diamond thin films. The system consists of plasma generation tube, deposition chamber, pumping lines for gas system. A mixture of $CH_4 and H_2$is used for reaction. Two thermocouples, a quartz tube surrounded by a RF antenna and a magnet, and a high temperature heater were set up in the deposition chamber. The process for the thin film diamond deposition has been carried put in a high vacuum system at a substrate temperature of $800^{\circ}C$, and pressure of 5 mtorr. It is also demonstrated. that the RF HPCVD system has advantages for controlling deposition parameters easily.

  • PDF

A Study on Various Parameters of the PE-CVD Chamber with Wafer Guide Ring (웨이퍼 가이드링 적용에 따른 PE-CVD 챔버 변수에 대한 연구)

  • Hyun-Chul Wang;Hwa-Il Seo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.55-59
    • /
    • 2024
  • Plasma Enhanced Chemical Vapor Deposition (PE-CVD) is a widely used technology in semiconductor manufacturing for thin film deposition. The implementation of wafer guide rings in PE-CVD processes is crucial for enhancing efficiency and product quality by ensuring uniform deposition around wafer edges and reducing particle generation. On the other hand, to prevent overall temperature non-uniformity and degradation of thin film quality within the chamber, it is essential to consider various parameters comprehensively. In this study, after applying the wafer guide rings, temperature variations and fluid flow changes were simulated. Additionally, by simulating the temperature and flow changes when applied to the PE-CVD chamber, this paper discusses the importance of optimizing variables within the entire chamber.

  • PDF

Carrier Design by Temperature Distribution Analysis in Chamber of ITO Deposition Inline Sputter (ITO 증착용 인라인 챔버 온도 분포해석에 의한 캐리어장치의 설계)

  • Lee, Sang-Jae;Choi, Ju-Ran;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.92-97
    • /
    • 2015
  • The design of the glass-carrier was studied using simulations of the temperature distribution of an ITO deposition inline-sputter process. The temperature distribution was simulated in Heating Chamber 7, and in the ITO Deposition Chambers 8 and 9. The temperature distribution of the glass sheets was low in both the lower and upper lines. Moreover, it was observed that the temperature in Chamber 8 significantly affected the temperature in Chamber 9, and that the latter was hotter. The rear of the chambers were subjected to more heating than the fronts, so the temperature range at the back was wider. Redesigning the shape of the carrier made it possible to load more glass sheets on the glass carrier, and to make deposits on the ITO glass at higher temperature, over a wider area.