• Title/Summary/Keyword: Depolarizing field

Search Result 4, Processing Time 0.018 seconds

The Electrical Properties of $(SrPb)(CaMg)TiO_3$ Ceramics with Contents of $Bi_2O_3{\cdot}3TiO_2$ ($Bi_2O_3{\cdot}3TiO_2$의 첨가량에 따른 $(SrPb)(CaMg)TiO_3$ 세라믹의 전기적 특성)

  • Kim, Chung-Hyeok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.2
    • /
    • pp.111-120
    • /
    • 1998
  • In this paper, the $(SrPb)(CaMg)TiO_3$ ceramics with paraelectric properties were fabricated by the mixed oxide method. It was investigated that which the variation of contents of $Bi_2O_3{\cdot}3TiO_2$ effects on structural, dielectrical and electrical properties of specimens. As a result, the grain size were grown with increasing the contents of $Bi_2O_3{\cdot}3TiO_2$. The relative dielectric constants were increased up to 4[mol%] of $Bi_2O_3{\cdot}3TiO_2$, and decreased more or less at a low temperature in the specimens which had more than. But the temperature coefficient. of capacitance were showed ${\pm}25$[%]. The dielectric loss were less than 0.05 in all specimens which had more than 4[mol%] of $Bi_2O_3{\cdot}3TiO_2$. In order to investigate the behavior of charged particles, the characteristics of electrical conduction were measured. As a result, the conduction current was divided into the three steps as a function of DC electric field. The first step was Ohmic region due to ionic conduction, below 15[kV/cm]. The second step was showed a saturation which seems to be related to a depolarizing field occuring in field-enforced ferroelectric phase, between 15[kV/cm] and 40[kV/cm]. The third step was attributed to Child's law related to space charge which injected from electrode, above 40[kV/cm].

  • PDF

[$Cl^-$-sensitive Component of $Ca^{2+}$-activated Tail Current in Rabbit Atrial Myocytes

  • Park, Choon-Ok;So, In-Suk;Ho, Won-Kyung;Kim, Woo-Gyeum;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • v.26 no.1
    • /
    • pp.27-35
    • /
    • 1992
  • We used the whole cell patch clamp technique to examine the ionic basis for the tail current after depolarizing pulse in single atrial myocytes of the rabbit. We recorded the tail currents during various repolarizations after short depolarizing pulse from a holding potential of -70 mV. The potassium currents were blocked by external 4-aminopyridine and replacement of internal potassium with cesium. The current was reversed to the outward direction above +10 mV. High concentrations of intracellular calcium buffer inhibited the activation of the current. Diltiazem and ryanodine blocked it too. These data suggest that the current is activated by intracellular calcium released from sarcoplasmic reticulumn. When the internal chloride concentration was increased, the inward tail current was increased. The current was partially blocked by the anion transport blocker niflumic acid. The current voltage curve of the niflumic acid sensitive current component shows outward rectification and is well fitted to the current voltage curve of the theoretically predicted chloride current calculated from the constant field equation. The currents recorded in rabbit atrial myocytes, with the method showing isolated outward Na Ca exchange current in ventricular cells of the guinea pig, suggested that chloride conductance could be activated with the activation of Na/ca exchange current. From the above results it is concluded that a chloride sensitive component which is activated by intracellular calcium contributes to tail currents in rabbit atrial cells.

  • PDF

Chemical Coupling between Horizontal Cells in the Catfish Retina

  • Lee, Sung-Jong;Jung, Chang-Sub;Bai, Sun-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.21-30
    • /
    • 1998
  • The effects of GABA and glutamate on the horizontal cells were explored by an intracellular recording method to discern the mechanisms of receptive field formation by chemical coupling in the catfish outer retina. The results suggest that the horizontal cells of the catfish retina might use GABA as their transmitters and that the GABAergic system contributes to the formation of receptive fields of the horizontal cells. GABAC receptors may be involved in a chemical coupling between horizontal cells and concerned with the depolarizing actions by GABA on horizontal cells in the catfish retina. Since the chloride equilibrium potential is more positive than the dark membrane potential in horizontal cells, GABA released from a horizontal cell may depolarize the neighboring horizontal cells. Thus a chemical coupling between horizontal cells may be formed. $GABA_A$ receptors also may be involved in the negative feedback mechanism between photoreceptor and horizontal cell. And glutamate may be involved in connecting positive and negative feedback systems since it potentiated the GABA's actions. Therefore, it is presumed that large receptive fields in the catfish retina are formed not only by electrical coupling but also by chemical coupling between horizontal cells. And information travels laterally by pathways involving both electrical coupling composed of gap junctions and chemical coupling in the retinal network.

  • PDF

A Study on the Behavior of Charged Particles of $(1-x)(SrPb)(CaMg)TiO_3-Bi_2O_3{\cdot}3TiO_2$ Ceramics ($(1-x)(SrPb)(CaMg)TiO_3-xBi_2O_3{\cdot}3TiO_2$ 세라믹의 하전입자 거동에 관한 연구)

  • Kim, Chung-Hyeok;Choi, Woon-Shik;Jung, Il-Hyung;Chung, Kue-Hye;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.34-37
    • /
    • 1992
  • In this paper, the $(SrPb)(CaMg)TiO_3$-xBi_2O_3{\cdot}3TiO_2$ ceramics with paraelectric properties were fabricated by the mixed oxide method. In order to investigate the behavior of charged particles, the characteristics of electrical conduction and thermally stimulated current were measured respectively. As a result on characteristics of the electrical conduction, the leakage current was increased as measuring temperature was increased. At room temperature, the conduction current was divided into the three steps as a function of DC electric field. The first step was Ohmic region due to ionic conduction, below 15[kV/cm]. The second step was showed a saturation which seems to be related to a depolarizing field occuring in field-enforced ferroelectric phase, between 15[kV/cm] and 40[kV/cm]. The third step was attributed to Child's law related to spare charge which injected from electrode, above 40[kV/cm]. Thermally stimulated currents(TSC) spectra with various biasing fields exhibited three distinguished peaks that were denoted as ${\alpha}$, ${\alpha}'$ and ${\beta}$ peak, each of which appeared at nearby -30, 20 and 95[$^{\circ}C$] respectively. It is confirmed that the a peak was due to trap electron trapped in the grainboundary, and ${\alpha}'$ peak that was observed above only 1.5[kV/mm] was attributed to field-enforced ferroelectric polarization. The origin of ${\beta}$ peak was identified as ion migration which caused the degradation.

  • PDF