• Title/Summary/Keyword: Deployment Optimization

Search Result 106, Processing Time 0.028 seconds

Information entropy based algorithm of sensor placement optimization for structural damage detection

  • Ye, S.Q.;Ni, Y.Q.
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.443-458
    • /
    • 2012
  • The structural health monitoring (SHM) benchmark study on optimal sensor placement problem for the instrumented Canton Tower has been launched. It follows the success of the modal identification and model updating for the Canton Tower in the previous benchmark study, and focuses on the optimal placement of vibration sensors (accelerometers) in the interest of bettering the SHM system. In this paper, the sensor placement problem for the Canton Tower and the benchmark model for this study are first detailed. Then an information entropy based sensor placement method with the purpose of damage detection is proposed and applied to the benchmark problem. The procedure that will be implemented for structural damage detection using the data obtained from the optimal sensor placement strategy is introduced and the information on structural damage is specified. The information entropy based method is applied to measure the uncertainties throughout the damage detection process with the use of the obtained data. Accordingly, a multi-objective optimal problem in terms of sensor placement is formulated. The optimal solution is determined as the one that provides equally most informative data for all objectives, and thus the data obtained is most informative for structural damage detection. To validate the effectiveness of the optimally determined sensor placement, damage detection is performed on different damage scenarios of the benchmark model using the noise-free and noise-corrupted measured information, respectively. The results show that in comparison with the existing in-service sensor deployment on the structure, the optimally determined one is capable of further enhancing the capability of damage detection.

Big Data Meets Telcos: A Proactive Caching Perspective

  • Bastug, Ejder;Bennis, Mehdi;Zeydan, Engin;Kader, Manhal Abdel;Karatepe, Ilyas Alper;Er, Ahmet Salih;Debbah, Merouane
    • Journal of Communications and Networks
    • /
    • v.17 no.6
    • /
    • pp.549-557
    • /
    • 2015
  • Mobile cellular networks are becoming increasingly complex to manage while classical deployment/optimization techniques and current solutions (i.e., cell densification, acquiring more spectrum, etc.) are cost-ineffective and thus seen as stopgaps. This calls for development of novel approaches that leverage recent advances in storage/memory, context-awareness, edge/cloud computing, and falls into framework of big data. However, the big data by itself is yet another complex phenomena to handle and comes with its notorious 4V: Velocity, voracity, volume, and variety. In this work, we address these issues in optimization of 5G wireless networks via the notion of proactive caching at the base stations. In particular, we investigate the gains of proactive caching in terms of backhaul offloadings and request satisfactions, while tackling the large-amount of available data for content popularity estimation. In order to estimate the content popularity, we first collect users' mobile traffic data from a Turkish telecom operator from several base stations in hours of time interval. Then, an analysis is carried out locally on a big data platformand the gains of proactive caching at the base stations are investigated via numerical simulations. It turns out that several gains are possible depending on the level of available information and storage size. For instance, with 10% of content ratings and 15.4Gbyte of storage size (87%of total catalog size), proactive caching achieves 100% of request satisfaction and offloads 98% of the backhaul when considering 16 base stations.

Instruction-Level Power Estimator for Sensor Networks

  • Joe, Hyun-Woo;Park, Jae-Bok;Lim, Chae-Deok;Woo, Duk-Kyun;Kim, Hyung-Shin
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.47-58
    • /
    • 2008
  • In sensor networks, analyzing power consumption before actual deployment is crucial for maximizing service lifetime. This paper proposes an instruction-level power estimator (IPEN) for sensor networks. IPEN is an accurate and fine grain power estimation tool, using an instruction-level simulator. It is independent of the operating system, so many different kinds of sensor node software can be simulated for estimation. We have developed the power model of a Micaz-compatible mote. The power consumption of the ATmega128L microcontroller is modeled with the base energy cost and the instruction overheads. The CC2420 communication component and other peripherals are modeled according to their operation states. The energy consumption estimation module profiles peripheral accesses and function calls while an application is running. IPEN has shown excellent power estimation accuracy, with less than 5% estimation error compared to real sensor network implementation. With IPEN's high precision instruction-level energy prediction, users can accurately estimate a sensor network's energy consumption and achieve fine-grained optimization of their software.

  • PDF

A Study on EMI Shield Optimization for Improvement of EMI between MIL-SATCOM and ES on a Surface Ship (수상함 MIL-SATCOM과 ES간의 전자기 간섭 개선을 위한 EMI 차폐판 최적설계 연구)

  • Chang, Hoseong;Ham, Younghoon;Jo, Kwanjun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.63-71
    • /
    • 2017
  • During the sea trial test, we discovered EMI(Electromagnetic Interference) between MIL-SATCOM parabolic antenna and ES(Electronic Warfare Support) omni antenna. Emitted side lobe of CW(Continuous Wave) from MIL-SATCOM raises the threshold level of ES omni antenna. Therefore detection rate of ES is decreased. To solve this problem, the path of side lobe of CW from MIL-SATCOM should be blocked using EMI shield. This paper presents the method how to calculate the size of EMI shield, material, and optimized deployment. The test of the EMI shield effect was performed on a surface ship. After installing EMI shield, EMI has been decreased significantly. This paper will provide a method how to design EMI shield and a way to verify the result.

Self Organization of Sensor Networks for Energy-Efficient Border Coverage

  • Watfa, Mohamed K.;Commuri, Sesh
    • Journal of Communications and Networks
    • /
    • v.11 no.1
    • /
    • pp.57-71
    • /
    • 2009
  • Networking together hundreds or thousands of cheap sensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. As sensor nodes are typically battery operated, it is important to efficiently use the limited energy of the nodes to extend the lifetime of the wireless sensor network (WSN). One of the fundamental issues in WSNs is the coverage problem. In this paper, the border coverage problem in WSNs is rigorously analyzed. Most existing results related to the coverage problem in wireless sensor networks focused on planar networks; however, three dimensional (3D) modeling of the sensor network would reflect more accurately real-life situations. Unlike previous works in this area, we provide distributed algorithms that allow the selection and activation of an optimal border cover for both 2D and 3D regions of interest. We also provide self-healing algorithms as an optimization to our border coverage algorithms which allow the sensor network to adaptively reconfigure and repair itself in order to improve its own performance. Border coverage is crucial for optimizing sensor placement for intrusion detection and a number of other practical applications.

Autonomic Self Healing-Based Load Assessment for Load Division in OKKAM Backbone Cluster

  • Chaudhry, Junaid Ahsenali
    • Journal of Information Processing Systems
    • /
    • v.5 no.2
    • /
    • pp.69-76
    • /
    • 2009
  • Self healing systems are considered as cognation-enabled sub form of fault tolerance system. But our experiments that we report in this paper show that self healing systems can be used for performance optimization, configuration management, access control management and bunch of other functions. The exponential complexity that results from interaction between autonomic systems and users (software and human users) has hindered the deployment and user of intelligent systems for a while now. We show that if that exceptional complexity is converted into self-growing knowledge (policies in our case), can make up for initial development cost of building an intelligent system. In this paper, we report the application of AHSEN (Autonomic Healing-based Self management Engine) to in OKKAM Project infrastructure backbone cluster that mimics the web service based architecture of u-Zone gateway infrastructure. The 'blind' load division on per-request bases is not optimal for distributed and performance hungry infrastructure such as OKKAM. The approach adopted assesses the active threads on the virtual machine and does resource estimates for active processes. The availability of a certain server is represented through worker modules at load server. Our simulation results on the OKKAM infrastructure show that the self healing significantly improves the performance and clearly demarcates the logical ambiguities in contemporary designs of self healing infrastructures proposed for large scale computing infrastructures.

A Ring-Mesh Topology Optimization in Designing the Optical Internet (생존성을 보장하는 링-그물 구조를 가진 광 인터넷 WDM 망 최적 설계)

  • 이영호;박보영;박노익;이순석;김영부;조기성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4B
    • /
    • pp.455-463
    • /
    • 2004
  • In this paper, we deal with a ring-mesh network design problem arising from the deployment of WDM for the optical internet. The ring-mesh network consists of ring topology and full mesh topology for satisfying traffic demand while minimizing the cost of OAOMs and OXCs. The problem seeks to find an optimal clustering of traffic demands in the network such that the total number of node assignments is minimized, while satisfying ring capacity and node cardinality constraints. We formulate the problem as a mixed-integer programming model and prescribe a tabu search heuristic procedure Promising computational results within 3% optimality gap are obtained using the proposed method.

QoS Priority Based Femtocell User Power Control for Interference Mitigation in 3GPP LTE-A HetNet

  • Ahmad, Ishtiaq;Kaleem, Zeeshan;Chang, KyungHi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.2
    • /
    • pp.61-74
    • /
    • 2014
  • In recent years, development of femtocells are receiving considerable attention towards increasing the network coverage, capacity, and improvement in the quality of service for users. In 3GPP LTE-Advanced (LTE-A) system, to efficiently utilize the bandwidth, femtocell and macro cell uses the same frequency band, but this deployment poses a technical challenge of cross-tier interference to macro users. In this paper, the novel quality of service based fractional power control (QoS-FPC) scheme under the heterogeneous networks environment is proposed, which considers the users priority and QoS-requirements during the power allocation. The proposed QoS-FPC scheme has two focal points: firs, it protects the macrocell users uplink communication by limiting the cross-tier interference at eNB below a given threshold, and second, it ensures the optimization of femtocell users power allocation at each power adjustment phase. Performance gain is demonstrated with extensive system-level simulations to show that the proposed QoS-FPC scheme significantly decreases the cross-tier intereference and improves the overall users throughput.

Efficient Frequency Management in the IMT-2000 CDMA System (IMT-2000 CDMA 시스템의 효율적 주파수 관리에 관한 연구)

  • Kim, Ho;Jin, Go-Whan;Cho, Chol-Hoe;Tcha, Dong-Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12A
    • /
    • pp.1992-2001
    • /
    • 1999
  • We address the frequency management in the IMT-2000 CDMA system. The system characteristics such as multiple classes of services, multiple kinds of channels with different bandwidths, overlaid cell structure, etc. are examined to make way for the problem definition. The problem is formulated as a constrained optimization model, the objective of which is to consume as narrow bandwidth as possible while satisfying various multimedia demands with required QOSs. A solution algorithm is developed which generates two sets of optimal decisions: 1) which combination of service classes to assign to each cell, 2) which set of frequency channels of varying bandwidths to allocate to each cell. The effectiveness of the proposed deployment policy is demonstrated via computational experiments.

  • PDF

Interference Management Algorithm Based on Coalitional Game for Energy-Harvesting Small Cells

  • Chen, Jiamin;Zhu, Qi;Zhao, Su
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4220-4241
    • /
    • 2017
  • For the downlink energy-harvesting small cell network, this paper proposes an interference management algorithm based on distributed coalitional game. The cooperative interference management problem of the energy-harvesting small cells is modeled as a coalitional game with transfer utility. Based on the energy harvesting strategy of the small cells, the time sharing mode of the small cells in the same coalition is determined, and an optimization model is constructed to maximize the total system rate of the energy-harvesting small cells. Using the distributed algorithm for coalition formation proposed in this paper, the stable coalition structure, optimal time sharing strategy and optimal power distribution are found to maximize the total utility of the small cell system. The performance of the proposed algorithm is discussed and analyzed finally, and it is proved that this algorithm can converge to a stable coalition structure with reasonable complexity. The simulations show that the total system rate of the proposed algorithm is superior to that of the non-cooperative algorithm in the case of dense deployment of small cells, and the proposed algorithm can converge quickly.