• Title/Summary/Keyword: Deployment Optimization

Search Result 106, Processing Time 0.03 seconds

A Hybrid Approach for Black-hole Intrusion Detection using Fuzzy Logic and PSO Algorithm

  • M. Rohani hajiabadi;S. Gheisari;A. Ahvazi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.10
    • /
    • pp.109-114
    • /
    • 2024
  • Wireless Sensor Networks (WSN) includes a large number of small sensor nodes and low cost, which are randomly located in a region. The wireless sensor network has attracted much attention from universities and industry around the world over the past decades, with features denser levels of node deployment, self-configuration, uncertainty of sensor nodes, computing, and memory constraints. Black-hole attack is one of the most known attacks on this network. In this study, the combination of fuzzy logic and particle swarm optimization (PSO) algorithms is proposed as an effective method for detecting black-hole attack in the AODV protocol. In the current study, a new function has been proposed in order to determine the membership of fuzzy parameters based on the particle swarm optimization algorithm. The proposed method was evaluated in different scenarios and was compared with other state of arts. The simulation result of this method proved the better performance in both detection rate and delivered packet rate.

Optimal Design of Stiffness of Torsion Spring Hinge Considering the Deployment Performance of Large Scale SAR Antenna (전개성능을 고려한 대형 전개형 SAR 안테나의 회전스프링 힌지의 강성 최적설계)

  • Kim, Dong-Yeon;Lim, Jae Hyuk;Jang, Tae-Seong;Cha, Won Ho;Lee, So-Jeong;Oh, Hyun-Ung;Kim, Kyung-Won
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.78-86
    • /
    • 2019
  • This paper describes the stiffness optimization of the torsion spring hinge of the large SAR antenna considering the deployment performance. A large SAR antenna is folded in a launch environment and then unfolded when performing a mission in orbit. Under these conditions, it is very important to find the proper stiffness of the torsion spring hinge so that the antenna panels can be deployed with minimal impact in a given time. If the torsion spring stiffness is high, a large impact load at the time of full deployment damages the structure. If it is weak, it cannot guarantee full deployment due to the deployment resistance. A multi-body dynamics analysis model was developed to solve this problem using RecurDyn and the development performance were predicted in terms of: development time, latching force, and torque margin through deployment analysis. In order to find the optimum torsion spring stiffness, the deployment performance was approximated by the response surface method (RSM) and the optimal design was performed to derive the appropriate stiffness value of the rotating springs.

Hyperparameter optimization for Lightweight and Resource-Efficient Deep Learning Model in Human Activity Recognition using Short-range mmWave Radar (mmWave 레이더 기반 사람 행동 인식 딥러닝 모델의 경량화와 자원 효율성을 위한 하이퍼파라미터 최적화 기법)

  • Jiheon Kang
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.6
    • /
    • pp.319-325
    • /
    • 2023
  • In this study, we proposed a method for hyperparameter optimization in the building and training of a deep learning model designed to process point cloud data collected by a millimeter-wave radar system. The primary aim of this study is to facilitate the deployment of a baseline model in resource-constrained IoT devices. We evaluated a RadHAR baseline deep learning model trained on a public dataset composed of point clouds representing five distinct human activities. Additionally, we introduced a coarse-to-fine hyperparameter optimization procedure, showing substantial potential to enhance model efficiency without compromising predictive performance. Experimental results show the feasibility of significantly reducing model size without adversely impacting performance. Specifically, the optimized model demonstrated a 3.3% improvement in classification accuracy despite a 16.8% reduction in number of parameters compared th the baseline model. In conclusion, this research offers valuable insights for the development of deep learning models for resource-constrained IoT devices, underscoring the potential of hyperparameter optimization and model size reduction strategies. This work contributes to enhancing the practicality and usability of deep learning models in real-world environments, where high levels of accuracy and efficiency in data processing and classification tasks are required.

A Study on the Deployment Plan of Fighter Aircraft Considering the Threat of Enemy Missiles (적 미사일 위협 고려한 전투기 전력 배치방안 연구)

  • Park, Inkyun;Ha, Yonghoon
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.4
    • /
    • pp.47-54
    • /
    • 2020
  • North Korea has recently developed and deployed missiles with various ranges as asymmetrical forces. Among them, short-range ballistic missiles with improved accuracy are expected to aim at achieving tactical goals by hitting important military facilities in Korea with a small number of missiles. Damage to the air force airfields, one of North Korea's main targets of missiles attack, could limit the operation of air force fighters essential to gaining air superiority. Based on the attack by the short range ballistic missiles, the damage probability of military airfields was simulated. And as the one of the concepts of passive defense, the way to reduce the loss of combat power was studied through the changes of the air force squadrons deployment. As a result, the effective deployment plan could be obtained to reduce the amount of power loss compared to the current deployment.

A Study On The Optimization of Java Class File under Java Card Platform (자바카드 플랫폼상에서 자바 클래스 파일의 최적화 연구)

  • 김도우;정민수
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.7
    • /
    • pp.1200-1208
    • /
    • 2003
  • Java Card technology allows us to run Java applications on smart cards and other memory-constrained devices. Java Card technology supports high security, portability and ability of storing and managing multiple applications. However, constrained memory resources of the Java Card Platform hinder wide deployment of the Java Card applications. Therefore, in this paper we propose a bytecode optimization algorithm to use the memory of a Java Card efficiently. Our algorithm can reduce the size of the bytecode by sharing the memory of the parameters of the catch clause in the try-catch-finally sentence.

  • PDF

A New Optimization System for Designing Broadband Convergence Network Access Networks (Broadband Convergence Network 가입자 망 설계 시스템 연구)

  • Lee, Young-Ho;Jung, Jin-Mo;Kim, Young-Jin;Lee, Sun-Suk;Park, No-Ik;kang, Kuk-Chang
    • Korean Management Science Review
    • /
    • v.23 no.2
    • /
    • pp.161-174
    • /
    • 2006
  • In this paper, we consider a network optimization problem arising from the deployment of BcN access network. BcN convergence services requires that access networks satisfy QoS meausres. BcN services have two types of traffics : stream traffic and elastic traffic. Stream traffic uses blocking probability as a QoS measure, while elastic traffic uses delay factor as a QoS measure. Incorporating the QoS requirements, we formulate the problem as a nonlinear mixed-integer Programming model. The Proposed model seeks to find a minimum cost dimensioning solution, while satisfying the QoS requirement. We propose two local search heuristic algorithms for solving the problem, and develop a network design system that implements the developed heuristic algorithms. We demonstrate the computational efficacy of the proposed algorithm by solving a realistic network design problem.

A Study On Optimized Design of Decision Support Systems for Container Terminal Operations (컨테이너 터미널 운영을 위한 의사결정시스템 설계의 최적화에 관한 연구)

  • Hong, Dong-Hee;Chung, Tae-Choong
    • The KIPS Transactions:PartA
    • /
    • v.10A no.5
    • /
    • pp.519-528
    • /
    • 2003
  • Container terminals need decisions in the course of daily-24 hour and 365 day - operations, and all these decisions are inter-related. The ultimate goal of Decision Support System is to minimize ship loading/unloading time, resources used to handle the workload, and congestion on the roads inside the terminal. It is also to make the best possible use of the storage space available. Therefore, the necessity of decision support tools are emphasized to enhance the operational efficiency of container shipping terminals more, because of limits and complexity of these decisions. So, in thia paper, we draw evaluation items for Decision Support Systems and suggest optimization strategy of evaluation items which have the greatest influence on Decision Support system, that is, yard stacking allocation, RTGC deployment among blocks, and YT allocation to QCs. We also estimate the efficiency of Decision Support System design by simulation using G2 language, comparing ship loading/unloading time.

Energy Efficiency Analysis and Optimization of Multiantenna Heterogeneous Cellular Networks Modeled by Matérn Hard-core Point Process

  • Chen, Yonghong;Yang, Jie;Cao, Xuehong;Zhang, Shibing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3366-3383
    • /
    • 2020
  • The Poisson point process (PPP) is widely used in wireless network modeling and performance analysis because it can provide tractable results for heterogeneous cellular networks (HetNets) analysis. However, it cannot accurately reflect the spatial distribution characteristics of the actual base stations (BSs). Considering the fact that the distribution of macro base stations (MBSs) is exclusive, the deployment of MBSs is modeled by the Matérn hard-core point process (MHCPP), and the deployment of pico base stations (PBSs) is modeled by PPP. This paper studies the performance of multiantenna HetNets and improves the energy efficiency (EE) of HetNets by optimizing the transmit power of PBSs. We use a simple approximate method to study the signal-to-interference ratio (SIR) distribution in two-tier MHCPP-PPP HetNets and derive the coverage probability, average data rate and EE of HetNets. Then, an optimization algorithm is proposed to improve the EE of HetNets. Finally, three transmission technologies are simulated and analyzed. The results show that multiantenna transmission has better system performance than single antenna transmission and that selecting the appropriate transmit power for a PBS can effectively improve the EE of the system. In addition, two-tier MHCPP-PPP HetNets have higher EE than two-tier PPP-PPP HetNets.

Impact of Power Control Optimization on the System Performance of Relay Based LTE-Advanced Heterogeneous Networks

  • Bulakci, Omer;Redana, Simone;Raaf, Bernhard;Hamalainen, Jyri
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.345-359
    • /
    • 2011
  • Decode-and-forward relaying is a promising enhancement to existing radio access networks and is already standardized in 3rd generation partnership project (3GPP) as a part of long term evolution (LTE)-Advanced Release 10. Two inband operation modes of relay nodes are supported, namely type 1 and type lb. Relay nodes promise to offer considerable gain for system capacity or coverage, depending on the deployment prioritization, in a cost-efficient way. Yet, in order to fully exploit the benefits of relaying, the inter-cell interference which is increased due to the presence of relay nodes should be limited. Moreover, large differences in the received power levels from different users should be avoided. The goal is to keep the receiver dynamic range low in order to retain the orthogonality of the single carrier-frequency division multiple access system. In this paper, an evaluation of the relay based heterogeneous deployment within the LTE-Advanced uplink framework is carried out by applying the standardized LTE Release 8 power control scheme both at evolved node B and relay nodes. In order to enhance the overall system performance, different power control optimization strategies are proposed for 3GPP urban and suburban scenarios. A comparison between type 1 and type 1b relay nodes is as well presented to study the effect of the relaying overhead on the system performance in inband relay deployments. Comprehensive system level simulations show that the power control is a crucial means to increase the cell edge and system capacities, to mitigate inter-cell interference and to adjust the receiver dynamic range for both relay node types.

An Optimization Modeling Study on Coastal Patrol Killer Medium(PKM) Requirement (연안 해역 소형 함정 소요 최적화 모델링 연구)

  • Hong, Yoon-Gee;Kim, Young-In;Kim, Yang-Rae;Lee, Jung-Woo;Jang, Dong-Hak
    • Journal of the military operations research society of Korea
    • /
    • v.36 no.2
    • /
    • pp.25-37
    • /
    • 2010
  • This paper deals with achieving the optimal quantity of required PKMs to cover the coastal areas divided into the proper size of sectors, and then using Set Cover Model, Clustered Model, etc. It is optimized via "Requirement Optimization Process" to allocate PKMs reasonably which is considered as conducting mission deployment sectors. This "Hybrid Proper Requirement Model" accommodating the optimization process is introduced and testified by examining a requirement problem.