• Title/Summary/Keyword: Deployment Optimization

Search Result 106, Processing Time 0.026 seconds

Optimal Deployment of Sensor Nodes based on Performance Surface of Acoustic Detection (음향 탐지 성능지표 기반의 센서노드 최적 배치 연구)

  • Kim, Sunhyo;Kim, Woojoong;Choi, Jee Woong;Yoon, Young Joong;Park, Joungsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.538-547
    • /
    • 2015
  • The goal of this study is to develop an algorithm to propose optimal deployment of detection sensor nodes in the target area, based on a performance surface, which represents detection performance of active and passive acoustic sonar systems. The performance surface of the active detection system is calculated from the azimuthal average of maximum detection ranges, which is estimated with a transmission loss and a reverberation level predicted using ray-based theories. The performance surface of the passive system is calculated using the transmission loss model based on a parabolic equation. The optimization of deployment configurations is then performed by a hybrid method of a virtual force algorithm and a particle swarm optimization. Finally, the effectiveness of deployment configurations is analyzed and discussed with the simulation results obtained using the algorithm proposed in this paper.

Optimization of Side Airbag Release Algorithm by Genetic Algorithm (유전알고리듬을 이용한 측면 에어백 전개 알고리듬의 최적화)

  • 김권희;홍철기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.45-54
    • /
    • 1998
  • For proper release of side airbags, the onset of crash should be detected first. After crash detection, the algorithm has to make a decision whether the side airbag deployment is necessary. If the deployment is necessary, proper timing has to be provided for the maximum protection of driver or passenger. The side airbag release algorithm should be robust against the statistical deviations which are inherent to experimental crash test data. Deterministic optimization algorithms cannot be used for the side aribag release algorithm since the objective function cannot be expressed in a closed form. From this background, genetic algorithm has been used for the optimization. The optimization requires moderate amount of computation and gives satisfactory results.

  • PDF

Constrained Relay Node Deployment using an improved multi-objective Artificial Bee Colony in Wireless Sensor Networks

  • Yu, Wenjie;Li, Xunbo;Li, Xiang;Zeng, Zhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.2889-2909
    • /
    • 2017
  • Wireless sensor networks (WSNs) have attracted lots of attention in recent years due to their potential for various applications. In this paper, we seek how to efficiently deploy relay nodes into traditional static WSNs with constrained locations, aiming to satisfy specific requirements of the industry, such as average energy consumption and average network reliability. This constrained relay node deployment problem (CRNDP) is known as NP-hard optimization problem in the literature. We consider addressing this multi-objective (MO) optimization problem with an improved Artificial Bee Colony (ABC) algorithm with a linear local search (MOABCLLS), which is an extension of an improved ABC and applies two strategies of MO optimization. In order to verify the effectiveness of the MOABCLLS, two versions of MO ABC, two additional standard genetic algorithms, NSGA-II and SPEA2, and two different MO trajectory algorithms are included for comparison. We employ these metaheuristics on a test data set obtained from the literature. For an in-depth analysis of the behavior of the MOABCLLS compared to traditional methodologies, a statistical procedure is utilized to analyze the results. After studying the results, it is concluded that constrained relay node deployment using the MOABCLLS outperforms the performance of the other algorithms, based on two MO quality metrics: hypervolume and coverage of two sets.

A Genetic Algorithm for Solving a QFD(Quality Function Deployment) Optimization Problem

  • Yoo, Jaewook
    • International Journal of Contents
    • /
    • v.16 no.4
    • /
    • pp.26-38
    • /
    • 2020
  • Determining the optimal levels of the technical attributes (TAs) of a product to achieve a high level of customer satisfaction is the main activity in the planning process for quality function deployment (QFD). In real applications, the number of customer requirements for developing a single product is quite large, and the number of converted TAs is also high so the size of the house of quality (HoQ) becomes huge. Furthermore, the TA levels are often discrete instead of continuous and the product market can be divided into several market segments corresponding to the number of HoQ, which also unacceptably increases the size of the QFD optimization problem and the time spent on making decisions. This paper proposed a genetic algorithm (GA) solution approach to finding the optimum set of TAs in QFD in the above situation. A numerical example is provided for illustrating the proposed approach. To assess the computational performance of the GA, tests were performed on problems of various sizes using a fractional factorial design.

Optimization of Destroyer Deployment for Effectively Detecting an SLBM based on a Two-Person Zero-Sum Game (2인 제로섬 게임 기반의 효과적인 SLBM 탐지를 위한 구축함 배치 최적화)

  • Lee, Jinho
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.1
    • /
    • pp.39-49
    • /
    • 2018
  • An SLBM (submarine-launched ballistic missile) seriously threatens the national security due to its stealthiness that makes it difficult to detect in advance. We consider a destroyer deployment optimization problem for effectively detecting an SLBM. An optimization model is based on the two-person zero-sum game in which an adversary determines the firing and arriving places with an appropriate trajectory that provides a low detection probability, and we establish a destroyer deployment plan that guarantees the possibly highest detection probability. The proposed two-person zero-sum game model can be solved with the corresponding linear programming model, and we perform computational studies with a randomly generated area and scenario and show the optimal mixed strategies for both the players in the game.

Joint resource optimization for nonorthogonal multiple access-enhanced scalable video coding multicast in unmanned aerial vehicle-assisted radio-access networks

  • Ziyuan Tong;Hang Shen;Ning Shi;Tianjing Wang;Guangwei Bai
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.874-886
    • /
    • 2023
  • A joint resource-optimization scheme is investigated for nonorthogonal multiple access (NOMA)-enhanced scalable video coding (SVC) multicast in unmanned aerial vehicle (UAV)-assisted radio-access networks (RANs). This scheme allows a ground base station and UAVs to simultaneously multicast successive video layers in SVC with successive interference cancellation in NOMA. A video quality-maximization problem is formulated as a mixed-integer nonlinear programming problem to determine the UAV deployment and association, RAN spectrum allocation for multicast groups, and UAV transmit power. The optimization problem is decoupled into the UAV deployment-association, spectrum-partition, and UAV transmit-power-control subproblems. A heuristic strategy is designed to determine the UAV deployment and association patterns. An upgraded knapsack algorithm is developed to solve spectrum partition, followed by fast UAV power fine-tuning to further boost the performance. The simulation results confirm that the proposed scheme improves the average peak signal-to-noise ratio, aggregate videoreception rate, and spectrum utilization over various baselines.

Research on UAV access deployment algorithm based on improved virtual force model

  • Zhang, Shuchang;Wu, Duanpo;Jiang, Lurong;Jin, Xinyu;Cen, Shuwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2606-2626
    • /
    • 2022
  • In this paper, a unmanned aerial vehicle (UAV) access deployment algorithm is proposed, which is based on an improved virtual force model to solve the poor coverage quality of UAVs caused by limited number of UAVs and random mobility of users in the deployment process of UAV base station. First, the UAV-adapted Harris Hawks optimization (U-AHHO) algorithm is proposed to maximize the coverage of users in a given hotspot. Then, a virtual force improvement model based on user perception (UP-VFIM) is constructed to sense the mobile trend of mobile users. Finally, a UAV motion algorithm based on multi-virtual force sharing (U-MVFS) is proposed to improve the ability of UAVs to perceive the moving trend of user equipments (UEs). The UAV independently controls its movement and provides follow-up services for mobile UEs in the hotspot by computing the virtual force it receives over a specific period. Simulation results show that compared with the greedy-grid algorithm with different spacing, the average service rate of UEs of the U-AHHO algorithm is increased by 2.6% to 35.3% on average. Compared with the baseline scheme, using UP-VFIM and U-MVFS algorithms at the same time increases the average of 34.5% to 67.9% and 9.82% to 43.62% under different UE numbers and moving speeds, respectively.

Optimal deployment of bistatic sonar using particle swarm optimization algorithm (입자 군집 최적화 알고리즘을 이용한 양상태 소나 최적 배치 연구)

  • Ji Seop Kim;Dae Hyeok Lee;Wonjun Yang;Young Seung Kim;Jee Woong Choi;Hyuckjong Kwon;Jungyong Park;Su-Uk Son;Ho Seuk Bae;Joung-Soo Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.437-444
    • /
    • 2024
  • Bistatic sonar performance varies significantly depending on the ocean environment, the location (latitude, longitude) and water depth of the source and receiver. Therefore, research on optimal deployment of bistatic sonar considering ocean environment is necessary. In this study, we suggest an algorithm to optimize the location and water depth of source and receiver when operating monostatic and bistatic sonar on two spatially separated surface ships in the Ulleung Basin in the East Sea. A particle swarm optimization algorithm was used to search the location and water depth of the source and receiver to maximize the detectable area within the search area. As a result of performing bistatic sonar deployment using the algorithm proposed in this study, the detectable area increased as the number of model iterations increased. Additionally, it was confirmed that the source and receiver on the two surface ships converged to the optimal location and water depth.

Dynamic Programming Approach for Determining Optimal Levels of Technical Attributes in QFD under Multi-Segment Market (다수의 개별시장 하에서 QFD의 기술속성의 최적 값을 결정하기 위한 동적 계획법)

  • Yoo, Jaewook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.2
    • /
    • pp.120-128
    • /
    • 2015
  • Quality function deployment (QFD) is a useful method in product design and development to maximize customer satisfaction. In the QFD, the technical attributes (TAs) affecting the product performance are identified, and product performance is improved to optimize customer requirements (CRs). For product development, determining the optimal levels of TAs is crucial during QFD optimization. Many optimization methods have been proposed to obtain the optimal levels of TAs in QFD. In these studies, the levels of TAs are assumed to be continuous while they are often taken as discrete in real world application. Another assumption in QFD optimization is that the requirements of the heterogeneous customers can be generalized and hence only one house of quality (HoQ) is used to connect with CRs. However, customers often have various requirements and preferences on a product. Therefore, a product market can be partitioned into several market segments, each of which contains a number of customers with homogeneous preferences. To overcome these problems, this paper proposes an optimization approach to find the optimal set of TAs under multi-segment market. Dynamic Programming (DP) methodology is developed to maximize the overall customer satisfaction for the market considering the weights of importance of different segments. Finally, a case study is provided for illustrating the proposed optimization approach.

Genetic Algorithms for Maximizing the Coverage of Sensor Deployment (최대 커버리지 센서 배치를 위한 유전 알고리즘)

  • Yoon, You-Rim;Kim, Yong-Hyuk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.406-412
    • /
    • 2010
  • In this paper, we formally define the problem of maximizing the coverage of sensor deployment, which is the optimization problem appeared in real-world sensor deployment, and analyze the properties of its solution space. To solve the problem, we proposed novel genetic algorithms, and we could show their superiority through experiments. When applying genetic algorithms to maximum coverage sensor deployment, the most important issue is how we evaluate the given sensor deployment efficiently. We could resolve the difficulty by using Monte Carlo method. By regulating the number of generated samples in the Monte Carlo evaluation of genetic algorithms, we could also reduce the computing time significantly without loss of solution quality.