• Title/Summary/Keyword: Dependent HEP

Search Result 293, Processing Time 0.027 seconds

Role of Calmodulin in the Generation of Reactive Oxygen Species and Apoptosis Induced by Tamoxifen in HepG2 Human Hepatoma Cells

  • Lee, Yong-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.4
    • /
    • pp.187-191
    • /
    • 2002
  • Tamoxifen, an antiestrogen, has previously been shown to induce apoptosis in HepG2 human hepatoblastoma cells through activation of the pathways independent of estrogen receptors, i.e., intracellular $Ca^{2+}$ increase and generation of reactive oxygen species (ROS). However, the mechanism of tamoxifen to link increased intracellular $Ca^{2+}$ to ROS generation is currently unknown. Thus, in this study we investigated the possible involvement of calmodulin, a $Ca^{2+}$ activated protein, and $Ca^{2+}$/calmodulin-dependent protein kinase II in the above tamoxifen-induced events. Treatment with calmodulin antagonists (calmidazolium and trifluoroperazine) or specific inhibitors of $Ca^{2+}$/calmodulin-dependent protein kinase II (KN-93 and KN-62) inhibited the tamoxifen-induced apoptosis in a dose-dependent manner. In addition, these agents blocked the tamoxifen-induced ROS generation in a concentration-dependent fashion, which was completely suppressed by intracellular $Ca^{2+}$ chelation. These results demonstrate for the first time that, despite of its well-known direct calmodulin-inhibitory activity, tamoxifen may generate ROS and induce apoptosis through indirect activation of calmodulin and $Ca^{2+}$/calmodulin-dependent protein kinase II in HepG2 cells.

Broussochalcone B from Broussonetia papyrifera Induce Apoptosis via Activation of a Caspase Cascade and Reactive Oxygen Species Production in Human HepG2 cells (꾸지나무 유래 화합물 Broussochalcone B의 HepG2 간암세포의 세포사멸에 미치는 영향)

  • Park, Jin Ryang;Ryu, Hyung Won;Cho, Byoung Ok
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.4
    • /
    • pp.273-279
    • /
    • 2017
  • The aim of this study was to investigate the mechanisms underlying apoptosis induced by a broussochalcone B (BCB) from Broussonetia papyrifera in HepG2 cells. The results showed that BCB treatment for 24 hr significantly inhibited cell viability in a dose-dependent manner, and induced apoptosis in HepG2 cells. More so, BCB treatment triggered the cleavage of caspase-8, -9, -3, poly (ADP-ribose) polymerase (PARP), increase of Bax level, and decrease of Bcl-2 expression. A general caspase inhibitor (z-VAD-fmk) blocked BCB-induced cell death. Furthermore, BCB treatment caused reactive oxygen species (ROS) production in a dose-dependent manner. In addition, an antioxidant N-acetylcysteine (NAC) blocked BCB-induced ROS production and cell death. Therefore, these results indicate that BCB-induced apoptosis is mediated by a caspase dependent pathway and ROS production in HepG2 cells.

The effects of Somok on apoptosis of human liver cancer HepG2 cell. (소목(蘇木)이 사람 간암 세포주인 HepG2의 세포사멸에 미치는 영향과 그 경로)

  • Kim, Pan-Jun;Yun, Hyun-Joung;Lee, Young-Tae;Seo, Kyo-Soo;Park, Sun-Dong
    • Herbal Formula Science
    • /
    • v.13 no.2
    • /
    • pp.111-123
    • /
    • 2005
  • The purpose of this study was to investigate the anticancer effects of Caesalpiniae Lignum (Somok) on HepG2 cells, a human liver cancer cell line. To study the cytotoxic effect of Caesalpiniae Lignum methanol extract (CL-MeOH) on HepG2 cells, the cells were treated with various concentrations of CL-MeOH and then cell viability was determined by XTT reduction method and trypan blue exclusion assay. CL-MeOH reduced proliferation of HepG2 cells in a dose-dependent manner. To confirm the induction of apoptosis, HepG2 cells were treated with various concentrations of CL-MeOH. The activation of caspase 3 and the cleavage of poly ADP-ribose polymerase (PARP), a substrate for caspase-3 and a typical sign of apoptosis, was examined by western blot analysis. CL-MeOH decreased procaspase 3 level in a dose-dependent manner and induced the clevage of PARP at concentration> $200{\mu}/ml$. Mitogen-activated protein (MAP) kinase signaling cascades are multi-functional signaling networks that influence cell growth, differentiation, apoptosis, and cellular responses to stress. CL-MeOH-induced MAPK activation was examined by Western blot for phosphorylated ERK, p38 and JNK. CL-MeOH significantly increased p38 phosphorylation and JNK phosphorylation in a dose-dependent manner. Inhibition of p38 function using the selective inhibitor SB20358O results in inhibition of apoptosis by CL-MeOH. These results suggest that CL-MeOH-induced apoptosis is MAP kinase-dependent apoptoric pathway. These results suggest that CL-MeOH is potentially useful as a chemotherapeutic agent in human liver cancer.

  • PDF

G1 Arrest of the Cell Cycle by Onchungeum in Human Hepatocarcinoma Cells (온청음(溫淸飮)이 인체 간암세포의 세포주기 G1 Arrest에 미치는 영향)

  • Goo, In-Moo;Shin, Heung-Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.821-828
    • /
    • 2008
  • Onchungeum, a herbal formula, which has been used for treatment of anemia due to bleeding, discharging blood and skin disease. In the present study, it was examined the effects of extract of Onchungeum (OCE) on the growth of human hepatocarcinoma cell lines Hep3B (p53 null type) and HepG2 (p53 wild type) in order to investigate the anti-proliferative mechanism by OCE. Treatment of Hep3B and HepG2 cells to OCE resulted in the growth inhibition in a dose-dependent manner, however Hep3B cell line exhibited a relatively strong anti-proliferative activity to OEC. Flow cytometric analysis revealed that OCE treatment in Hep3B cells caused G1 phase arrest of the cell cycle, which was associated with various morphological changes in a dose-dependent fashion. RT-PCR and immunoblotting data revealed that treatment of OCE caused the down-regulation of cyclin D1 expression, however the levels of cyclin E expression were not changed by OCE. The G1 arrest of the cell cycle was also associated with the induction of Cdk inhibitor p27 by OCE. Because the p53 gene is null in Hep3B cells, it is most likely that the induction of p21 is mediated through a p53-independent pathway. Moreover, p27 detected in anti-Cdk4 and anti-Cdk2 immunoprecipitates from the OCE-treated cells, suggesting that OCE-induced p27 protein blocks Cdk kinase activities by directing binding to the cyclin/Cdk complexes. Furthermore, OCE treatment potently suppresses the phosphorylation of retinoblastoma proteins and the levels of the transcription factor E2F-1 expression. Taken together, these results indicated that the growth inhibitory effect of OCE in Hep3B hepatoma cells was associated with the induction of G1 arrest of the cell cycle through regulation of several major growth regulatory gene products.

The Effects of Loranthus parasiticus Merr. on Cell Cycle and Expression of Related Genes in HepG2 Cell (상기생(桑寄生)이 HepG2 cell의 세포분열 및 관련유전자 발현에 미치는 영향)

  • Rhew, Kwang-Yul;Kim, Young-Chul;Woo, Hong-Jung;Lee, Jang-Hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.26 no.1
    • /
    • pp.60-73
    • /
    • 2005
  • Objectives : The aim of this study was to evaluate the effects of Loranthus parasiticus Merr. on cell cycle and expression of related genes in HepG2 cells. Methods : The MTT assay, cell counting assay, $[^3H]-Thymidine$ incorporation assay, flow cytometric analysis, quantitative RT-PCR and western blot assay were studied. Results : In the water extract of Loranthus parasiticus Merr., inhibition of cell proliferation and DNA synthesis in HepG2 cells was seen. These inhibitory effects were due to inhibition of G l-S transition in cell cycle. After treatment with the extract, expression of cyclin D1(G1 check point related gene) was inhibited particularly in dose-dependent and time-dependent manners. Conclusion : These results suggest that the inhibition of cell cycle progression by Loranthus parasiticus Merr. in HepG2 cell is due to suppression of cyclin D1(G1 check point related gene) mRNA expression and protein synthesis.

  • PDF

Involvement of NOX2-derived ROS in human hepatoma HepG2 cell death induced by Entamoeba histolytica

  • Young Ah Lee ;Myeong Heon Shin
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.4
    • /
    • pp.388-396
    • /
    • 2023
  • Entamoeba histolytica is an enteric tissue-invasive protozoan parasite causing amoebic colitis and liver abscesses in humans. Amoebic contact with host cells activates intracellular signaling pathways that lead to host cell death via generation of caspase-3, calpain, Ca2+ elevation, and reactive oxygen species (ROS). We previously reported that various NADPH oxidases (NOXs) are responsible for ROS-dependent death of various host cells induced by amoeba. In the present study, we investigated the specific NOX isoform involved in ROS-dependent death of hepatocytes induced by amoebas. Co-incubation of hepatoma HepG2 cells with live amoebic trophozoites resulted in remarkably increased DNA fragmentation compared to cells incubated with medium alone. HepG2 cells that adhered to amoebic trophozoites showed strong dichlorodihydrofluorescein diacetate (DCF-DA) fluorescence, suggesting intracellular ROS accumulation within host cells stimulated by amoebic trophozoites. Pretreatment of HepG2 cells with the general NOX inhibitor DPI or NOX2-specific inhibitor GSK 2795039 reduced Entamoeba-induced ROS generation. Similarly, Entamoeba-induced LDH release from HepG2 cells was effectively inhibited by pretreatment with DPI or GSK 2795039. In NOX2-silenced HepG2 cells, Entamoeba-induced LDH release was also significantly inhibited compared with controls. Taken together, the results support an important role of NOX2-derived ROS in hepatocyte death induced by E. histolytica.

Berberine Induces p53-Dependent Apoptosis through Inhibition of DNA Methyltransferase3b in Hep3B Cells (Hep3B 세포에서 베르베린은 DNA methyltransferase3b 억제를 통해 p53을 발현시켜 세포사멸을 유도)

  • Kim, Dae-Yeon;Kim, Seon-Hyoung;Cheong, Hee-Tae;Ra, Chang-Six;Rhee, Ki-Jong;Jung, Bae Dong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.1
    • /
    • pp.69-77
    • /
    • 2020
  • The tumor suppressor gene, p53, is inactivated in the human hepatocellular carcinoma cells line, Hep3B. Berberine has been reported to inhibit the proliferation of cancer cells. This study examined whether apoptosis was induced in berberine-treated Hep3B cells and observed the association between apoptosis and the expression of p53 and DNA methyltransferase (DNMT). The cell viability was measured using an MTT assay. Apoptosis of Hep3B was measured using annexin V flow cytometry. Berberine-treated cells were examined for their DNMT enzymatic activity, mRNA expression, and protein synthesis. The p53 levels were examined by Western blot analysis. The berberine treatment resulted in increased Hep3B cell death and apoptosis in a time- and dose-dependent manner. The DNMT3b activity, mRNA expression, and protein levels all decreased after the berberine treatment. In contrast, the p53 protein levels increased with a concomitant decrease in DNMT3b. No change in the expression of ERK was observed, but the P-ERK levels decreased in a dose dependent manner. These results indicate that a treatment of Hep3B cells with berberine can reduce the expression of DNMT3b, leading to an increase in the tumor suppressant gene p53 and an increase in cell apoptosis. This shows that berberine can effectively suppress the proliferation of liver cancer cells.

A Phospholipase C-Dependent Intracellular $Ca^{2+}$ Release Pathway Mediates the Capsaicin-Induced Apoptosis in HepG2 Human Hepatoma Cells 73

  • Kim Jung-Ae;Kang Young Shin;Lee Yong Soo
    • Archives of Pharmacal Research
    • /
    • v.28 no.1
    • /
    • pp.73-80
    • /
    • 2005
  • The effect of capsaicin on apoptotic cell death was investigated in HepG2 human hepatoma cells. Capsaicin induced apoptosis in time- and dose-dependent manners. Capsaicin induced a rapid and sustained increase in intracellular $Ca^{2+}$ concentration, and BAPTA, an intracellular $Ca^{2+}$ chelator, significantly inhibited capsaicin-induced apoptosis. The capsaicin-induced increase in the intracellular $Ca^{2+}$ and apoptosis were not significantly affected by the extracellular $Ca^{2+}$ chelation with EGTA, whereas blockers of intracellular $Ca^{2+}$ release (dantrolene) and phospholipase C inhibitors, U-73122 and manoalide, profoundly reduced the capsaicin effects. Interestingly, treatment with the vanilloid receptor antagonist, capsazepine, did not inhibit either the increased capsaicin-induced $Ca^{2+}$ or apoptosis. Collectively, these results suggest that the capsaicin-induced apoptosis in the HepG2 cells may result from the activation of a PLC-dependent intracellular $Ca^{2+}$ release pathway, and it is further suggested that capsaicin may be valuable for the therapeutic intervention of human hepatomas.

Protective Effect of Cyanidin-3-glucoside, the Major Component of Rubus fruticosus L. Mutants by Irradiation, on H2O2-induced Oxidative Damage in HepG2 Cells (방사선 돌연변이 블랙베리 주성분 Cyanidin-3-glucoside의 과산화수소 유발 산화적 손상에 대한 세포 보호 효과)

  • Cho, Byoung Ok;So, Yangkang;Lee, Chang Wook;Jin, Chang Hyun;Yook, Hong Sun;Jeong, Il Yun
    • Journal of Radiation Industry
    • /
    • v.8 no.1
    • /
    • pp.35-42
    • /
    • 2014
  • This study was conducted to analyze the protective capacity of cyanidin-3-glucoside (C3G), which is rich in mulberry and blackberry as an anthocyanin pigment. In this study, we found that treatment with C3G significantly reduced ROS production in hydrogen peroxide $(H_2O_2)-treated$ HepG2 cells in a dose-dependent manner. In addition, treatment with C3G significantly increased the cell viability in a dose-dependent manner in $H_2O_2-treated$ HepG2 cells. Moreover, treatment with C3G dose-dependently decreased the release of LDH and activation of caspase-3 in HepG2 cells treated with $H_2O_2$. Furthermore, the DNA damage in $H_2O_2-treated$ HepG2 cells was decreased by C3G treatment when compared with the control group in a dose-dependent manner. Additionally, treatment with C3G recovered the activity of antioxidant enzymes such as superoxide dismutase and catalase in $H_2O_2-treated$ HepG2 cells. To summarize, these results suggest that C3G protects cells from $H_2O_2-induced$ oxidative damage by activating antioxidant enzymes.

Induction of Apoptosis and Its Mechanism by Siegesbeckia Glabrescens in HepG2 cells (간암 세포주에서의 희렴의 Apoptosis 유도와 기전)

  • Kim, Yoon-Tae;Lee, Heon-Jae;Kim, Gil-Whon;Shin, Heung-Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.640-646
    • /
    • 2005
  • This study was performed for the investigation of anticancer effects of Siegesbeckia glabrescens(SG) on HepG2 cells, a human hepatoma cell line. In the previous study, we examined the involvement of nitric oxide (NO) on anti-proliferative and apoptotic efficacy of SG in vascular smooth muscle cells. The possible mechanism of the apoptotic effects of SG was investigated in HepG2 cells. SG showed potent cytotoxic activity in HepG2 but not chang cells, liver normal cells. SG treatment caused morphological change such as cell shrinkage, nuclei condensation and cell blebbing in HepG2 cells. SG also increased the nitrite production of HepG2 cells in a dose-dependent manner. Furthermore, L-NNA treatment inhibited the anti-proliferative effect of SG. From RT-PCR, SG decreased Bcl-2 but no affected on Bax. Western blot for procaspase-3 and COX-2 showed that degradation of procaspase-3 protein level or inhibition of COX-2 protein expression by SG treatment. In addition, the apoptotic effect of SG was also demonstrated by DNA laddering. In conclusion, SG-induced HepG2 cells death can occur via apoptosis which was dose-dependent, and associated with apoptosis-related Bcl-2/Bax gene expressions, COX-2 inhibition, caspase-3 activation and NO pathway. These results suggest that SG is potentially useful as a chemotherapeutic/chemopreventive agent in hepatocellular carcinoma.