• Title/Summary/Keyword: Dependence receptor

Search Result 50, Processing Time 0.027 seconds

Caspase Cleavage of Receptor Tyrosine Kinases in the Dependence Receptor Family

  • Gyu Hwan Park;Yoo Kyung Kang;Seung-Mann Paek;Chan Young Shin;Sun-Young Han
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.359-369
    • /
    • 2023
  • Dependence receptors are a group of receptor proteins with shared characteristics of transducing two different signals within cells. They can transduce a positive signal of survival and differentiation in the presence of ligands. On the other hand, dependence receptors can transduce an apoptosis signal in the absence of ligands. The function of these receptors depends on the availability of their ligands. Several receptor tyrosine kinases (RTKs) have been reported as dependence receptors. When cells undergo apoptosis by dependence receptors, the intracellular domain of some RTKs is cleaved by the caspases. Among the RTKs that belong to dependence receptors, we focused on eight RTKs (RET, HER2, MET, ALK, TrkC, EphA4, EphB3, and c-KIT) that are cleaved by caspases. In this review, we describe the features of the receptors, their cleavage sites, and the fate of the cleaved products, as well as recent implications on them being used as potential therapeutics for cancer treatment.

Antinarcotic Effect of Ginseng (인삼의 마약중독 해독효과)

  • Oh, Sei-Kwan
    • Journal of Ginseng Research
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Ginseng saponin has been shown to inhibit the development of dependence on morphine, cocaine, methamphetamine, but the antinarcotics effects of ginseng on nalbuphine remains still largely unknown. Ginseng administration attenuated the naloxone-induced jumping behavior on nalbuphine dependent mice. The development of morphine dependence was mediated through ${\mu}-opioid$ receptor, however, development of nalbuphine dependence was mediated through ${\kappa}-opioid$ receptor. However, it was found that the efficacy of analgesic antagonism of GTS was mediated through the serotonergic mechanism, not mediated through the opioid receptor. In addition, ginseng administration modulated cellular signal transduction in the brain. The increased NMDA receptor subunit (NR1, pNR1), phosphate extracellular signal regulated protein kinase (pERK), phosphate cAMP response element binding protein (pCREB) expression by nalbuphine was decreased by the administration of ginseng powder in cortex, hippocampus, striatum of rat brain. These results suggest that ginseng could be one of the targets of antinarcotic therapies to reduce the development of tolerance and dependence on nalbuphine as well as morphine.

Limonene Inhibits Methamphetamine-Induced Sensitizations via the Regulation of Dopamine Receptor Supersensitivity

  • Gu, Sun Mi;Kim, Sung Yeon;Lamichhane, Santosh;Hong, Jin Tae;Yun, Jaesuk
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.357-362
    • /
    • 2019
  • Limonene is a cyclic terpene found in citrus essential oils and inhibits methamphetamine- induced locomotor activity. Drug dependence is a severe neuropsychiatric condition that depends in part on changes in neurotransmission and neuroadaptation, induced by exposure to recreational drugs such as morphine and methamphetamine. In this study, we investigated the effects of limonene on the psychological dependence induced by drug abuse. The development of sensitization, dopamine receptor supersensitivity, and conditioned place preferences in rats was measured following administration of limonene (10 or 20 mg/kg) and methamphetamine (1 mg/kg) for 4 days. Limonene inhibits methamphetamine- induced sensitization to locomotor activity. Expression of dopamine receptor supersensitivity induced by apomorphine, a dopamine receptor agonist, was significantly reduced in limonenepretreated rats. However, there was no significant difference in methamphetamine-induced conditioned place preferences between the limonene and control groups. These results suggest that limonene may ameliorate drug addiction-related behaviors by regulating postsynaptic dopamine receptor supersensitivity.

Ginseng Saponins Prevent the Adverse Effect of Dependence-liable Drugs

  • Kim, Hack-Seang;Lim, Hwa-Kyung
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.168-173
    • /
    • 1998
  • A single administration of cocaine (CO), morphine (MOR) and methamphetamine (MA) showed hyperactivity in mice. Ginseng total saponin (GTS), ginsenosides Rbl and Rgl inhibited the hyperactivity induced by the drugs. The repeated administration of CO, MOR and MA showed the development of psychological dependence showing a.: the development of conditioned place preference (CPP) in mice and the development of dopamine (DA) receptor supersensitivity showing as sensitization of the drugs. GTS and Rgl inhibited the development of not only psychological dependence but also of DA receptor supersensitivity induced by CO and MA Rbl prevented also the development of psychological dependence and DA receptor supersensitivity induced by CO and MA but not by MOR. These results suggest that the development psychological dependence induced by the drugs is closely related with the development of DA receptor supersensitivity since both phenomena were inhibited by them. Apomorphine induced climbing behavior was also inhibited by G75 but not by both of Rbl and Rgl, indicating that GTS modulate dopaminergic action at both of pre and postsynaptic sites, but both of Rbl and Rgl , only at the presynaptic site. These results suggest that active components acting at the postsynaptic site exist in GTS. In this study, it was found that GTS, ginsenosides Rbl and Rgl inhibited tyrosine hydroxylase (TH) and these components exerted inhibitory effects on both Cal' currents and $\Delta$ Cm in rat adrenal chromaffin cells. These results suggest that G75 and ginsenosides regulate catecholamine synthesis and secretion. Meanwhile, it has been demonstrated that Rbl, at high doses has more powerful inhibition of cartecholamine secretion at the presynaptic site than Rbl. Therefore, it was presumed that inhibition of morphine induced psychological dependence by Rgl, but not by Rbl results from differences in the extent of this inhibitory action on dopaminergic synthesis and secretion.

  • PDF

Antinarcotic Effect of Panax ginseng

  • Hack Seang Kim;Ki
    • Proceedings of the Ginseng society Conference
    • /
    • 1990.06a
    • /
    • pp.36-44
    • /
    • 1990
  • The analgesic effect of morphine was antagonized and the development of tolerance was suppressed by the modification of the neurologic function in the animals treated with ginseng saponins. The activation of the spinal descending inhibitory systems as well as the supraspinal structures by the administration of morphine was inhibited in the animals treated with ginseng saponins intracerebrally or intrathecally The development of morphine tolerance and dependence, and the abrupt expression of naloxone induced abstinence syndrome were also inhibited by ginsenoside Kbl , Rba, Rgl and Re. These results suggest that ginsenoside Kbl, Rba, Rgl and Re are the bioactive components of panax ginseng on the inhibition of the development of morphine tolerance and dependence, and the inhibition of abrupt abstinence syndrome. In addition, further research on the minor components of Panax ginseng should be investigated. A single or daily treatment with ginseng saponins did not induce any appreciable changes in the brain level of monoamines at the various time intervals and at the various day intervals, respectively The inhibitory or facilitated effects of ginseng saponins on electrically evoked contractions in guinea pig ileum (U-receptor) and mouse was definers (5·receptor) were not mediated through opioid receptors. The antagonism of a x receptor agonist, U-, iO.488H was also not mediated through opioid receptors in the animals treated with ginseng saponins, bolt mediated through serotonergic mechanisms. Ginseng saponins inhibited morphine S-dehydrogenase that catalyzed the production of morphine from morphine, and increased hepatic glutathione contents for the detoxification of morphine. This result suggests that the dual action of the above plays an important role in the inhibition of the development of morphine tolerance and dependence.

  • PDF

Dependence of High Affinity Binding of Epidermal Growth Factor on Receptor Cytoplasmic Domain (Receptor Cytoplasmic 영역에 의존하는 EGF의 고친화성 결합)

  • 강용호
    • KSBB Journal
    • /
    • v.7 no.3
    • /
    • pp.201-208
    • /
    • 1992
  • Cell surface binding of epidermal growth factor(EGF) to EGF receptors was studied for a series of site-directed receptor mutants transfected into B82 mouse fibroblasts. Scatchard plots for truncation mutant receptors significantly lost nonlinearity for truncations below residue 1022. Transient plots of dissociation kinetics exhibited biphasic behavior for all receptor types, but the fraction of receptor in slow-dissociating form was reduced by an order of magnitude for the truncation mutants below residue 1022. Comparison of dissociation kinetics between control cells and cells treated with Triton X-100 revealed no significant variation for the slow-dissociating receptor form, but a noticeable variation was observed for the fast-dissociating receptor form when EGF receptors were truncated below residue 991. These results suggest that high affinity of EGF binding at cell surface depend on the EGF receptor cytoplasmic region.

  • PDF

Comparison of the Effects of MK-801 and Dextromethorphan on Opioid Physical Dependence and Analgesic Tolerance (N-methyl-D-aspartate 수용체 길항제가 몰핀 신체의존성 및 진통내성에 미치는 영향)

  • 이선희;신대섭;유영아;김대병;이종권;김부영
    • Toxicological Research
    • /
    • v.11 no.1
    • /
    • pp.63-68
    • /
    • 1995
  • N-methyl-D-aspartate(NMDA) receptor has been well known as an important mediator of several forms of neural and behavioral plasticity. But different results were reported about the effect of MK-801 or dextromethorphan on opioid dependence. The present studies examined whether NMDA receptor antagonists can alter the opioid dependence and tolerance in rodents. Naloxone precipitated withdrawal symptoms and changes of locomotor activities were observed in MK-801 or dextromethorphan pretreated morphine-dependent rats. Tail-flick assay was used for morphine analgesia and tolerance was found after 4 day's consecutive injections (10 mg/kg, s.c., twice/day) of morphine in mice. Locomotor activity was increased and the withdrawal symptoms were decreased by the pretreatment of MK-801 in morphine-dependent rats. But 0.3 mg/kg i.p. of MK-801 intensified the body weight loss and produced severe ataxia and rotation although some withdrawal signs were attenuated. Morphine induced analgesic tolerance was inhibited by the pretreatment of MK-801 and dextromethorphan. Dextromethorphan was more potent than MK-801 in inhibiting the development of the analgesic tolerance in mice. These results suggest that NMDA system may be involved in opioid withdrawal and analgesic tolerance but appropriate caution should be requested when MK-801 is used in combination with opioid because of untoward neurologic signs.

  • PDF

Preparation of ${\delt}-Opioid$ Receptor-Sepcific Antibodies Using Molecular Cloned Genes

  • Kim, Ae-Young;Lee, Shee-Yong;Kim, Kyeon-Min
    • Archives of Pharmacal Research
    • /
    • v.18 no.2
    • /
    • pp.113-117
    • /
    • 1995
  • We re-cloned mouse ${\delt}-Opioid$receptor from NG108-15 cells using RT-PCR, and confirmed it by restriction analysis and by sequencing the beginning and end part of the amplified DNA. When transiently expressed in COS-7 cells, cloned ${\delt}-Opioid$ receptor showed saturable and specific binding to $[^3H]$naloxone with very similar binding parameters to originally reported ones. To make antibodies specific for the ${\delt}-Opioid$ receptor, the carboxy tail of the receptor, which is unique to the ${\delt}-Opioid$ receptor compared with other opioid receptors, was expressed in bacteria as a ufsion proteinwith glutathione S-transferase. Purified fusion protein selective for ${\delt}-Opioid$ receptor when tested by western blotting using membrane proteins prepared from transfected COS-7 cells. Cloned ${\delt}-Opioid$ receptor andl antibodies specific for ${\delt}-Opioid$ receptor are going to be valuable tools for studying pharmacological actions of the ${\delt}-Opioid$ receptor and morphine dependence.

  • PDF

Dependence Potential of the Synthetic Cannabinoids JWH-073, JWH-081, and JWH-210: In Vivo and In Vitro Approaches

  • Cha, Hye Jin;Lee, Kwang-Wook;Song, Min-Ji;Hyeon, Yang-Jin;Hwang, Ji-Young;Jang, Choon-Gon;Ahn, Joon-Ik;Jeon, Seol-Hee;Kim, Hyun-Uk;Kim, Young-Hoon;Seong, Won-Keun;Kang, Hoil;Yoo, Han Sang;Jeong, Ho-Sang
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.363-369
    • /
    • 2014
  • Synthetic cannabinoids (CBs) such as the JWH series have caused social problems concerning their abuse liability. Because the JWH series produces euphoric and hallucinogenic effects, they have been distributed illegally under street names such as "Spice" and "Smoke". Many countries including Korea have started to schedule some of the JWH series compounds as controlled substances, but there are a number of JWH series chemicals that remain uncontrolled by law. In this study, three synthetic CBs with different binding affinities to the $CB_1$ receptor (JWH-073, 081, and 210) and ${\Delta}^9$-tetrahydrocannabinol (${\Delta}^9$-THC) were evaluated for their potential for psychological dependence. The conditioned place preference test (unbiased method) and self-administration test (fixed ratio of 1) using rodents were conducted. $K_i$ values of the three synthetic cannabinoids were calculated as supplementary data using a receptor binding assay and overexpressed $CB_1$ protein membranes to compare dependence potential with $CB_1$ receptor binding affinity. All mice administered JWH-073, 081, or 210 showed significantly increased time spent at unpreferred space in a dose-dependence manner in the conditioned place preference test. In contrast, all tested substances except ${\Delta}^9$-THC showed aversion phenomenon at high doses in the conditioned place preference test. The order of affinity to the $CB_1$ receptor in the receptor binding assay was JWH-210 > JWH-081 >> JWH-073, which was in agreement with the results from the conditioned place preference test. However, no change in self-administration was observed. These findings suggest the possibility to predict dependence potential of synthetic CBs through a receptor binding assay at the screening level.

Attenuation of Morphine Tolerance and Withdrawal Syndrome by Coadministration of Nalbuphine

  • Jang, So-Yong;Kim, Hee-Jeong;Kim, Dong-Hyun;Jeong, Myeon-Woo;Ma, Tangen;Kim, Seong-Youl;Ho, Ing K.;Oh, Sei-Kwan
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.677-684
    • /
    • 2006
  • Morphine has been used widely on the treatment of many types of chronic pain. However the development of tolerance to and dependence on morphine by repeat application is a major problem in pain therapy. The purpose of the present study was to investigate whether combined administration of nalbuphine with morphine affects the development of tolerance to and dependence on morphine. We hypothesize that the use of nalbuphine, ${\kappa}-agonist$ may prove to be useful adjunct therapy to prevent morphine-induced undesirable effects in the management of some forms of chronic pain. Morphine (10 mg/kg) was injected to rats intraperitoneally for 5 day. The variable dose of nalbuphine (0.1, 1.0 and 5.0 mg/kg) was administered (i.p.) in combination with morphine injection. The development of morphine tolerance was assessed by measuring the antinociceptive effect with the Randall-Selitto apparatus. The development of dependence on morphine was determined by the scoring the precipitated withdrawal signs for 30 min after injection of naloxone (10 mg/kg, i.p.). Nalbuphine did not attenuate antinociceptive effect of morphine in rats. Interestingly, combined administration of morphine with nalbuphine (10:1) significantly attenuated the development of dependence on morphine. The elevation of $[^3H]MK-801$ binding in frontal cortex, dentate gyrus, and cerebellum after chronic morphine infusion was suppressed by the coadministration of nalbuphine. In addition, the elevation of NR1 expression by morphine was decreased by the coadministration of nalbuphine in rat cortex. These results suggest that the coadministration of nalbuphine with morphine in chronic pain treatment can be one of therapies to reduce the development of tolerance to and dependence on morphine.