• 제목/요약/키워드: Denture adhesive

검색결과 33건 처리시간 0.015초

Polyetherketoneketone (PEKK)과 다양한 의치상용 전장 레진 간의 인장결합강도에 관한 연구 (A study of the tensile bond strength between Polyetherketoneketone (PEKK) and various veneered denture base resin)

  • 박연희;서재민;이정진
    • 대한치과보철학회지
    • /
    • 제60권3호
    • /
    • pp.231-238
    • /
    • 2022
  • 목적: 본 연구는 의치상용 레진의 전장방법이 polyetherketoneketone (PEKK)과의 인장결합강도에 미치는 영향을 알아보고자 하였다. 재료 및 방법: 총 80개의 PEKK 시편을 T자 형태로 절삭 가공하고, airborne-particle abrasion 처리 후 전처리제(Visio.link)를 도포하였다. 전장 방법에 따라 4개의 군(n = 20)으로 나누어, 충전형 광중합형 복합레진(SR Adoro), 유동형 광중합형 복합레진(Crea.lign), 열중합형 의치상용 레진(Vertex RS), 자가중합형 의치상용 레진(ProBase Cold)으로 전장하였다. 각 군은 인공시효처리 여부에 따라 2가지 하위 군(n = 10)으로 나누었다. 만능시험기를 이용해 인장결합강도 측정하고 현미경으로 파절단면을 관찰하였다. 통계적 검증을 위해 이원 분산분석 및 Tukey's HSD 사후 검정을 시행하였다(α = .05). 결과: 인공시효처리와 레진 전장방법은 인장결합강도에 통계적으로 유의한 영향을 주었다(P < .001). 인공시효처리 전과 후 모두 유동형 광중합형 복합레진 군에서 가장 높은 값을 보였고, 열중합형 레진 군에서 가장 낮은 값을 보였다(P < .05). 파절 단면은 군에 따라 혼합 파절과 계면 파절이 혼재되어 나타났다. 결론: 레진의 전장 방식은 PEKK과의 인장결합강도에 영향을 줄 수 있으며, 인공시효처리는 인장결합강도를 감소시킨다.

의치 재이장 재료와 금속의치상간의 결합력에 관한 연구 (A STUDY ON THE TENSILE STRENGTH BETWEEN METAL DENTURE BASE AND RELINING MATERIALS)

  • 이준석;임주환;조인호
    • 대한치과보철학회지
    • /
    • 제38권1호
    • /
    • pp.1-11
    • /
    • 2000
  • Relining and rebasing are essential for long-term success and oral health in removable prosthodontics. Major features of failures between metal base and relining resins are adhesive failure due to lack of chemical bonding. The purpose of this study was to find a better metal primer and metal surface treatment method that enhance the bonding strength with relining resin materials. The surfaces of ticonium alloys were treated with $25{\mu}m$ sandblasting (Group A), stone wheel(Group B), stone wheel and EZ oxisor(Group C), $75{\mu}m$ sandblasting(Group D) and EZ oxisor application after $75{\mu}m$ sandblasting(Group E). They were subdivided into no primer application (Group I), MR bond application(Group II) and Metafast bonding liner (Group III). Then specimens were completed though being bonded with relining resins. The specimens were stored in $38^{\circ}C$ water for 48 hours and tensile strength was measured using the universal testing machine. The results were as follows, 1. Primer application groups showed higher bond strength than no primer application group(p<0.05). 2. In comparison with primer application groups, MR bond group showed higher bond strength than Meta fast bonding liner application group(p<0.05). 3. In comparison with surface treatment methods, Bond strengths of group A and B were significantly different with group C, D, and E, and group C were significantly different with group D, and E in no primer application group()(0.05). In primer application groups, group A, B, C were significantly different with group D and E(p<0.05). According to results of this study, Metal primer application and metal surface roughening were considered to be advantageous for relining of metal base dentures.

  • PDF

A STRAIN GAUGE ANALYSIS OF IMPLANT-SUPPORTED CANTILEVERED FIXED PROSTHESIS UNDER DISTAL STATIC LOAD

  • Sohn, Byoung-Sup;Heo, Seong-Joo;Chang, Ik-Tae;Koak, Jai-Young;Kim, Seong-Kyun
    • 대한치과보철학회지
    • /
    • 제45권6호
    • /
    • pp.717-723
    • /
    • 2007
  • Statement of problem. Unreasonable distal cantilevered implant-supported prosthesis can mask functional problems of reconstruction temporarily, but it can cause serious strain and stress around its supported implant and surrounding alveolar bone. Purpose. The purpose of this study was to evaluate strain of implants supporting distal cantilevered fixed prosthesis with two different cantilevered length under distal cantilevered static load. Material and methods. A partially edentulous mandibular test model was fabricated with auto-polymerizing resin (POLYUROCK; Metalor technologies, Stuttgart, Swiss) and artificial denture teeth (Endura; Shofu inc., Kyoto, Japan). Two implants-supported 5-unit screw-retained cantilevered fixed prosthesis was made using standard methods with Type III gold alloy (Harmony C&B55; Ivoclar-vivadent, Liechtenstein, Germany) for superstructure and reinforced hard resin (Tescera; Ivoclar-vivadent, Liechtenstein, Germany) for occlusal material. Two strain gauges (KFG-1-120-C1-11L1M2R; KYOWA electronic instruments, Tokyo, Japan) were then attached to the mesial and the distal surface of each standard abutment with adhesive (M-bond 200; Tokuyama, Tokyo, Japan). Total four strain gauges were attached to test model and connected to dynamic signal conditioning strain amplifier (CTA1000; Curiotech inc., Paju, Korea). The stepped $20{\sim}100$ N in 25 N increments, cantilevered static load 8mm apart (Group I) or 16mm apart (Group II), were applied using digital push-pull gauge (Push-Pull Scale & Digital Force Gauge, Axis inc., Seoul, Korea). Each step was performed ten times and every strain signal was monitored and recorded. Results. In case of Group I, the strain values were surveyed by $80.7{\sim}353.8{\mu}m$ in Ch1, $7.5{\sim}47.9{\mu}m/m$ in Ch2, $45.7{\sim}278.6{\mu}m/m$ in Ch3 and $-212.2{\sim}718.7{\mu}m/m$ in Ch4 depending on increasing cantilevered static load. On the other hand, the strain values of Group II were surveyed by $149.9{\sim}612.8{\mu}m/m$ in Ch1, $26.0{\sim}168.5{\mu}m/m$ in Ch2, $114.3{\sim}632.3{\mu}m/m$ in Ch3, and $-323.2{\sim}-894.7{\mu}m/m$ in Ch4. Conclusion. A comparative statistical analysis using paired sample t-test about Group I Vs Group II under distal cantilevered load shows that there are statistical significant differences for all 4 channels (P<0.05).