• Title/Summary/Keyword: Dentin bond

Search Result 446, Processing Time 0.023 seconds

INFLUENCE OF TOOTH SURFACE ROUGHNESS AND TYPE OF CEMENT ON RETENTION OF COMPLETE CAST CROWNS (치아표면 거칠기와 시멘트 종류가 전부주조관의 유지력에 미치는 영향)

  • Kim, Kil-Su;Song, Chang-Yong;Ahn, Seung-Geun;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.4
    • /
    • pp.465-473
    • /
    • 1999
  • Bond strength of luting cements to dentin is a critical consideration for success of complete cast crowns. This study was performed to evaluate the relationship between surface characteristics of teeth prepared for complete cast crowns and retention of cemented restorations. Eighty artificial crowns were cast for standardized complete crown tooth preparations accomplished with the use of a special device on recently extracted human teeth. Coarse diamond(#102R, Shofu) and superfine finishing diamond(#SF102R, Shofu) burs of similar shape were used. Crowns in each group were randomly subdivided into few subgroups of 10 for luting cements selected for this study: zinc phosphate cement (FLECK' S), polycarboxylate cement (Poly-F), rein-forced glass ionomer cement (Fuji PLUS). and adhesive resin cement (Panavia 21). Retention was evaluated by measuring the tensile load required to dislodge the artificial crown from tooth preparations with an Instron testing machine, and analysed by one-way ANOVA and Student's t-test. The obtained results were as follows ; 1. When tooth preparation was done with coarse diamond bur, retentive force was diminished in order of Panavia 21 Fuji PLUS, FLECK'S, and Poly-F. Retentive forces showed the significant difference between Fuji PLUS group and FLECK'S group(p<0.001). 2. When tooth preparation was done with superfine diamond bur, retentive force was diminished in order of Fuji PLUS, Panavia 21, FLECK'S, and Poly-F. Retentive forces showed the significant difference between Panavia 21 group and FLECK'S group(p<0.001). 3. Retentive force in coarse tooth surfaces was significantly higher than that in superfine tooth surface with all luting cements(p<0.001), and cement residues were almost retained with-in the cast crown in all groups.

  • PDF

APPLICATION OF ACIDIC PRIMER FOR ORTHODONTIC ADHESIVE SYSTEM (Acidic primer를 이용한 교정용 브라켓 접착의 전단결합강도)

  • Kim, Jin-Hee;Jin, Hun-Hee;Oh, Jang-Kyun
    • The korean journal of orthodontics
    • /
    • v.31 no.1 s.84
    • /
    • pp.137-147
    • /
    • 2001
  • Acidic primer is the bonding agent which combines the conditioning and priming agent into the single solution and was originally developed for the dentin bonding system. It is less harmful to the tooth structure and more convenient to manipulate than the traditional etching procedure. The Purpose of this study is to evaluate the shear bond strength of various bonding materials when the enamel is treated with acidic primer for the bracket bonding procedure. Fifty recently extracted human premolars were randomly separated into five groups -Group I using Clearfil Liner Bond 2 adhesive system to the enamel treated with acidic primer, Group II using Transbond XT adhesive system to the enamel treated with acidic primer, Group III using panavia 21 adhesive system to the enamel treated with acidic primer, Group IV using Fuji-Ortho LC adhesive system to the enamel treated with acidic primer, Group V using Transbond XT adhesive system to the enamel treated with 37$\%$ phosphoric acid. The shear bond strength was measured with Instron universal testing machine after storing in $37^{\circ}C$ water bath for 48 hours. After debonding, the teeth and brackets were examined under scanning electron microscope (SEM) and assessed with the adhesive remnant index (ARI). The results were as follows : 1. There were no significant differences in shear bond strength between group III ($8.69{\pm}2.72MPa$), group IV (9.7 ± 3.16 MPa), and group V ($10.48{\pm}2.60MPa$) (p>0.05). 2. The shear bond strength of group III and group IV was significantly higher than that of group I ($1.09{\pm}0.53MPa$), and Group II ($2.70{\pm}1.46MPa$) (p<0.05). 3. The ARI of group IV ($2.1{\pm}1.1$) and group V ($2.9{\pm}0.3$) was significantly higher than that of group I ($0.2{\pm}0.4$), group II ($0.3{\pm}0.9$) and group III ($0.2{\pm}0.4$) (p<0.05). 4. There were no significant difference between the ARI of group IV and group V (p>0.05). This result suggests that the combination of acidic primer and some bonding adhesive can provide sufficient shear bond strength for clinical orthodontics.

  • PDF

DIFFERENCE IN BOND STRENGTH ACCORDING TO FILLING TECHNIQUES AND CAVITY WALLS IN BOX-TYPE OCCLUSAL COMPOSITE RESIN RESTORATION (박스 형태의 복합레진 수복시 충전법 및 와동벽에 따른 결합력 차이에 관한 연구)

  • Ko, Eun-Joo;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.4
    • /
    • pp.350-355
    • /
    • 2009
  • Bond strength depends on characteristics of bonding surface and restorative technique. The majority of studies dealing with dentin bond strength were carried out on flat bonding surface, therefore, difference of bond strength between axial wall and pulpal wall is not clear yet. This study evaluated bonding difference between cavity walls in class I composite resin restoration with different filling techniques. Twenty extracted caries-free human third molars were used. Cavities were prepared in 6 ${\times}$4 ${\times}$3 mm box-type and divided into four groups according to filling technique and bonding surface: Group I; bulk filling - pulpal wall, Group II; bulk filling - axial wall, Group III; incremental filling - pulpal wall, Group IV; incremental filling - axial wall. Cavities were filled with Filtek $Z250^{(R)}$(3M/ESPE., USA) and Clearfill SE $bond^{(R)}$(Kuraray, Japan). After 24 hour-storage in $37^{\circ}C$water, the resin bonded teeth were sectioned bucco-lingualy at the center of cavity. Specimens were vertically sectioned into 1.0 ${\times}$1.0 mm thick serial sticks perpendicular to the bond surface using a low-speed diamond saw (Accutom 50, Struers, Copenhagen, Denmark) under water cooling. The trimmed specimens were then attached to the testing device and in turn, was placed in a universal testing machine (EZ test, Shimadzu Co., Kyoto, Japan) for micro-tensile testing at a cross-head speed of 1 mm/min. The results obtained were statistically analyzed using 2-way ANOVA and t-test at a significance level of 95%. The results were as follows: 1. There was no significant difference between bulk filling and incremental filling. 2. There was no significant difference between pulpal wall and axial wall, either. Within the limit of this study, it was concluded that microtensile bond strength was not affected by the filling technique and the site of cavity walls.

ELASTIC CONSTANTS, SHEAR BOND STRENGTH OF TUNNEL RESTORATIVE MATERIALS AND MARGINAL RIDGE STRENGTH OF RESTORED TEETH (터널형 2급와동 충전재의 탄성계수와 전단결합강도 및 수복치의 변연융선 파절강도에 관한 연구)

  • Lee, Ka-Yean;Park, Yeong-Joon;Yang, Kyu-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.3
    • /
    • pp.746-763
    • /
    • 1996
  • An alternative design to conventional class II cavity preparation for proximal carious lesions is the tunnel preparation. It preserves the marginal ridge intact, thus making it possible to maintain the natural contact relationship with the adjacent tooth and minimize tooth reduction. This in vitro study was purposed to evaluate the effect of the materials' elastic constants and shear-bond strength on the marginal ridge fracture resistance of teeth restored by the tunnel technique, and to find the materials of choice for tunnel restorations. $Resinomer^{(R)}$, $Ketac-silver^{(R)}$, $Miracle-Mix^{(R)}$, and Tytin were used as restorative material. The elastic constants of each restorative material were evaluated by ultrasonic pulse measurement. Young's modulus and bulk modulus of the restorative materials were evaluated in three specimens for each material type. The shear-bond strength of the restorative materials to the dentin surface was measured after thermocycling 400 times between 6 and $60^{\circ}C$, using ten specimens for each material type. For measuring marginal ridge strength, 60 sound extracted molar teeth were distributed into six groups by size. Sound molar teeth were used as a Control group and unfilled prepared teeth were grouped as Unrestored. Another four groups were named Resinomer group, Ketac-Silver group, Miracle Mix group, and Tytin group by type of restorative material. Tunnel cavity preparation was done with ' 1/2, 2, and 4 round burs in sequence. Initial access to proximal surface was made through an occlusal access preparation started at least 2mm from the marginal ridge, and the proximal opening was formed about 2.5mm below the marginal ridge. After restoration and thermocycling, marginal ridge strength was measured using a universal testing machine. The results were as follows: 1. The Young's modulus of $Tytin^{(R)}$ was 63.95 GPa, followed by $Ketac-Silver^{(R)}$ 27.60 GPa, $Miracle-mix^{(R)}$ 18.48 GPa, and $Resinomer^{(R)}$ 10.74 GPa showing significant differences between the groups(P<0.05). The bulk modulus of the materials showed the same order as Young's modulus. The value of $Tytin^{(R)}$ showed 59.57 GPa indicating that it will deform less than other materials under the same stress. It was followed by $Ketac-Silver^{(R)}$ 23.57 GPa, Miracle $Mix^{(R)}$ 12.50 GPa, and $Resinomer^{(R)}$ 11.60 GPa. 2. The Resinomer group had a shear-bond strength of 7.41 MPa which was significantly higher than those of the Ketac-Silver group (1.80 MPa) and the Miracle Mix group (2.84 MPa) (P<0.01). All the specimens of Tytin group detatched from the dentin surface during thermocycling. 3. The mean marginal ridge strength of the Unrestored group(46.14 kgf) was significantly lower than that of the Control group (84.24 kgf) (P<0.01). The marginal ridge strength of teeth restored by the tunnel technique was, in order, Ketac-Silver group 74.06 kgf, Miracle Mix group 73.36 kgf, Resinomer group 63.47 kgf, and Tytin group 58.76 kgf. The Ketac-Silver, Miracle Mix, and Resinomer groups showed no significant difference with the Control group (P>0.05), but the Tytin group showed significantly lower strength compared to the Control group(P<0.05). The results showed that the marginal ridge strength of the teeth restored by the tunnel technique was not significantly lower than that of sound teeth. They also demonstrated that the bonding strength of the restorative material to the tooth surface should be high and the modulus of elasticity should not be lower than that of the tooth in order to restore the marginal ridge strength to its natural condition.

  • PDF

QUANTITATIVE COMPARISON OF PERMEABILITY IN THE ADHESIVE INTERFACE OF FOUR ADHESIVE SYSTEMS (열순환 후 상아질 접착 계면의 수분 투과성 변화에 대한 정량적 분석)

  • Chang, Ju-Hea;Yi, Kee-Wook;Kim, Hae-Young;Lee, In-Bog;Cho, Byeong-Hoon;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.1
    • /
    • pp.51-60
    • /
    • 2009
  • The purpose of this study was to perform quantitative comparisons of water permeable zones in both the adhesive and the hybrid layer before and after thermo cycling in order to assess the integrity of the bonding interface. Twenty eight flat dentin surfaces were bonded with a light-cured composite resin using one of four commercial adhesives [OptiBond FL (OP), AdheSE (AD), Clearfil SE Bond (CL). and Xeno III (XE)]. These were sectioned into halves and subsequently cut to yield 2-mm thick specimens; one specimen for control and the other subjected to thermocycling for 10,000 cycles. After specimens were immersed in ammoniacal silver nitrate for 24 h and exposed to a photo developing solution for 8 h, the bonded interface was analyzed by scanning electron microscopy (SEM) and wavelength dispersive spectrometry (WDS) at five locations per specimen. Immediately after bonding. the adhesive layer of OP showed the lowest silver uptake, followed by CL, AD. and XE in ascending order (p < 0.0001); the hybrid layer of CL had the lowest silver content among the groups (p = 0.0039). After thermocycling, none of the adhesives manifested a significant increase of silver in either the adhesive or the hybrid layer. SEM demonstrated the characteristic silver penetrated patterns within the interface. It was observed that integrity of bonding was well maintained in OP and CL throughout the thermocycling process. Adhesive-tooth interfaces are vulnerable to hydrolytic degradation and its permeability varies in different adhesive systems, which may be clinically related to the restoration longevity.

EFFECT OF LIGHT IRRADIATION MODES ON THE MARGINAL LEAKAGE OF COMPOSITE RESIN RESTORATION (광조사 방식이 복합레진 수복물의 변연누출에 미치는 영향)

  • 박은숙;김기옥;김성교
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.4
    • /
    • pp.263-272
    • /
    • 2001
  • The aim of this study was to investigate the influence of four different light curing modes on the marginal leakage of Class V composite resin restoration. Eighty extracted human premolars were used. Wedge-shaped class Y cavities were prepared on the buccal surface of the tooth with high-speed diamond bur without bevel. The cavities were positioned half of the cavity above and half beyond the cemento-enamel junction. The depth, height, and width of the cavity were 2 mm, 3 mm and 2 mm respectively. The specimens were divided into 4 groups of 20 teeth each. All the specimen cavities were treated with Prime & Bond$^{R}$ NT dental adhesive system (Dentsply DeTrey GmbH, Germany) according to the manufacturer's instructions and cured for 10 seconds except group VI which were cured for 3 seconds. All the cavities were restored with resin composite Spectrum$^{TM}$ TPH A2 (Dentsply DeTrey GmbH, Germany) in a bulk. Resin composites were light-cured under 4 different modes. A regular intensity group (600 mW/${cm}^2$, group I) was irradiated for 30 s, a low intensity group (300 mW/${cm}^2$, group II) for 60 s and a ultra-high intensity group (1930 mW/${cm}^2$, group IV) for 3 s. A pulse-delay group (group III) was irradiated with 400 mW/${cm}^2$ for 2 s followed by 800 mW/${cm}^2$ for 10 s after 5 minutes delay. The Spectrum$^{TM}$ 800 (Dentsply DeTrey GmbH, Germany) light-curing units were used for groups I, II and III and Apollo 95E (DMD, U.S.A.) was used for group IV. The composite resin specimens were finished and polished immediately after light curing except group III which were finished and polished during delaying time. Specimens were stored in a physiologic saline solution at 37$^{\circ}C$ for 24 hours. After thermocycling (500$\times$, 5-55$^{\circ}C$), all teeth were covered with nail varnish up to 0.5 mm from the margins of the restorations, immersed in 37$^{\circ}C$, 2% methylene blue solution for 24 hours, and rinsed with tap water for 24 hours. After embedding in clear resin, the specimens were sectioned with a water-cooled diamond saw (Isomet$^{TM}$, Buehler Co., Lake Bluff, IL, U.S.A.) along the longitudinal axis of the tooth so as to pass the center of the restorations. The cut surfaces were examined under a stereomicroscope (SZ-PT Olympus, Japan) at ${\times}$25 magnification, and the images were captured with a CCD camera (GP-KR222, Panasonic, Japan) and stored in a computer with Studio Grabber program. Dye penetration depth at the restoration/dentin and the restoration/enamel interfaces was measured as a rate of the entire depth of the restoration using a software (Scion image, Scion Corp., U.S.A.) The data were analysed statistically using One-way ANOVA and Tukey's method. The results were as follows : 1. Pulse-Delay group did not show any significant difference in dye penetration rate from other groups at enamel and dentin margins (p>0.05) 2. At dentin margin, ultra-high intensity group showed significantly higher dye penetration rate than both regular intensity group and low intensity group (p<0.05). 3. At enamel margin, there were no statistically significant difference among four groups (p>0.05). 4. Dentin margin showed significantly higher dye penetration rate than enamel margin in all groups (p<0.05).

  • PDF

Shear bond strength of the three different kinds of resin cement on CAD/CAM ceramic inlay (CAD/CAM 세라믹 인레이에 대한 3종의 레진 시멘트의 전단결합강도에 관한 연구)

  • Baek, Chul-Woo;Park, Cheol-Woo;Park, Jun-Sub;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.1
    • /
    • pp.20-26
    • /
    • 2013
  • Purpose: The purpose of this study was to evaluate the bond strengths between the latest CAD/CAM ceramic inlay and various resin cements which are used primarily for esthetic restoration. Materials and methods: Cylindrical ceramic blocks(Height: 5 mm, diameter: 3 mm) were fabricated by using Cerec3 and bonded on the dentin of the ninety extracted caries-free molars using three different kinds of resin cement(Unicem$^{(R)}$, Biscem$^{(R)}$, and Variolink II$^{(R)}$) according to the manufacturer's instructions. Ninety specimens were divided into 3 groups according to three different kinds of resin cement. Half of each group were conducted thermocycling under the conditions of the $5-55^{\circ}C$, 5,000 cycle but the other half of them weren't. All specimens were kept in normal saline $37^{\circ}C$, for 24 hours before measuring the bond strength. The shear bond strength was measured by Universal testing machine with a cross head speed of 0.5 mm/min. The results were analyzed statistically by t-test and one-way ANOVA. Results: Unicem$^{(R)}$ group showed the highest shear bond strength despite a slight decline by thermocycling. The shear bond strength of Unicem$^{(R)}$ group and ValiolinkII$^{(R)}$ group were significantly influenced by thermocycling, whereas Biscem$^{(R)}$ group was not influenced (P<.05). There were no significant differences in the bond strength between the three groups without thermocycling, but there was significant differences between Unicem$^{(R)}$ group and Valiolink II$^{(R)}$ group with thermocycling(P<.05). Conclusion: It has been shown to be clinically effective when the self-adhesive resin cements Unicem$^{(R)}$ and Biscem$^{(R)}$ were used instead of the etch-and-rinse resin cement Valiolink II$^{(R)}$ during the bonding of CAD/CAM ceramic inlay restorations with teeth.

BONDING OF RESIN INLAY TO GLASS-IONOMER BASE WITH VARIOUS TREATMENTS ON INLAY SURFACE (내표면 처리에 따른 레진 인레이와 글래스아이오노머 베이스간의 접착)

  • Jang, Byung-Sung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.399-406
    • /
    • 2000
  • The effect of inlay surface treatment on bonding was investigated when resin inlay was bonded to resin-modified glass-ionomer base with resin cement. For the preparation of glass-ionomer base, resin-modified glass-ionomer cement (Fuji II LC, GC Co., Japan) was filled in class I cavities of 7mm in diameter and 2mm in depth made in plastic molds. Eighty eight resin inlay specimens were made with Charisma$^{(R)}$ (Kulzer, Germany) and then randomly assigned to the four different surface treatment conditions: Group I, $50{\mu}m$ aluminium oxide sandblasting and silane treatment ; Group II, silane treatment alone ; Group III, sandblasting alone, and Group IV (control), no surface treatment. After a dentin bonding agent with primer (One-Step$^{TM}$, Bisco Inc., IL., U.S.A.) was applied to bonding surface of resin inlay and base, resin inlay were cemented to glass-ionomer base with a resin cement (Choice$^{TM}$, Bisco Inc., IL., U.S.A.). Shear bond strengths of each specimens were measured using Instron universal testing machine (4202 Instron, lnstron Co., U.S.A.) and fractured surfaces were examined under the stereoscope. Statistical analysis was done with one-way ANOVA and Dunkan's multiple range test. The results were as follows: 1. Sandblasting and silane treatment provided the greatest bond strength(10.56${\pm}$1.95 MPa), and showed a significantly greater bond strength than sandblasting alone or no treatment (p<0.05). 2. Silane treatment provided a significantly greater bond strength(9.77${\pm}$2.04 MPa) than sandblasting alone or no treatment (p<0.05). However, there was no significant difference in bond strength between sandblasting treatment and silane one (p>0.05). 3. Sandblasting alone provided no significant difference in bond strength from no treatment (p>0.05). 4. Stereoscopic examination of fractured surface showed that sandblasting and silane treatment or silane treatment alone had more cohesive failure mode than adhesive failure mode. 5. In relationship between shear bond strength and failure mode, cohesive failure occurred more frequently as bond strength increased.

  • PDF

The Nanoleakage Patterns of Different Dentin Adhesive Systems (상아질 접착제의 nanoleakage 양상에 관한 연구)

  • Lee, Tae-Yeon;Cho, Byeong-Hoon;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.2
    • /
    • pp.169-177
    • /
    • 2003
  • 본 연구는 total etching (Scotchbond Multi-Purpose; MP) 및 self-etching (Clearfil SE Bond; SE 과 Prompt L-pop LP) 상아질 접착제의 nanoleakage 양상을 관찰하고 열순환 후의 nanoleakage 양상의 변화를 분석하고자 하였다. 30개의 발거된 치아의 교합면 및 협, 설측 법랑질을 제거하였다. 열 순환 시행 여부에 따라 두 군으로 나누어 실험하였으며 각각의 상아질 접착제 도포 후 Z-250으로 교합면을 수복하였다. Silver nitrate용액 및 현상액에 침적 후치아의 협설 방향으로 평행하게 절단하여 SEM으로 관찰하였다. 서로 다른 양상의 nanoleakage가 관찰되었다. MP의 경우는 resin tag 주위로 뚜렷한 은의 침착을 관찰 할 수 있었으며 혼합층 전체 두께에 띠 및 점상으로 흩어져 침착된 은을 관찰 할 수 있었다. SE의 경우는 혼합층의 하층을 따라 은으로 침착된 선을 관찰 할 수 있었으며 혼합층과 adhesive 경계를 따라 무정형의 은 침착물 들을 관찰할 수 있었다. LP의 경우는 혼합층의 하부 및 혼합층 내에 띠 모양으로 은의 침착을 관찰 할 수 있었으며 혼합층의 하부에서는 관찰되지 않고 혼합층의 내부에서만 관찰되는 경우도 있었다. 열순환을 시행한 군에서는 전반적 nanoleakage 양상은 열 순환을 시행하지 않은 군과 유사하였으나 은 침착의 증가를 관찰 할 수 있었다.

COMPARISON OF MICROLEAKAGE WITH THREE DIFFERENT ADHESIVE SYSTEMS (수 종의 복합레진 접착 시스템에서의 미세 누출의 비교)

  • Seok, Choong-Ki;Nam, Dong-Woo;Nam, Soon-Hyeun;Kim, Young-Jin;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.4
    • /
    • pp.636-644
    • /
    • 2004
  • Recently, self-etching adhesive system have been developed and bonding procedures simplified into one or two steps, which are simultaneously applied to both enamel and dentin. These systems are easy to use and have the potential for good clinical success. The purpose of this study is to evaluate in vitro the microleakage on the cementum/dentin and enamel walls in composite resin restoration of Class V cavities, regarding the use of different adhesive systems. 30 human premolars were divided into 3 groups. A standardized Class V preparation was prepared on the buccal and lingual surface of each premolar. The preparation were made parallel to the cementoenamel junctions, with the gingival half of the preparation extending 1mm apical to the cementoenamel junction. After adhesive system was applied to teeth as manufacture's recommendation, hybrid resin composite was filled in bulk into the preparation and light polymerized according to manufacturer's recommendations. Specimen were stored in distilled water at $37^{\circ}C$ for 5 days and thermocycled 1000 times ($5^{\circ}C{\pm}2^{\circ}C\;and\;55^{\circ}C{\pm}2^{\circ}C)$, then immersed in a 2% methylene blue solution for 12 hours. After sectioning mesio distally through the restorations, the degree of dye penetration was scored under a stereomicroscope at ${\times}\;25$ magnification. The data were analyzed statistically using t-test and one-way ANOVA. The results were as follows: ${\cdot}$ There is no adhesive system which can prevent microleakage perfectly. ${\cdot}$ There is significant difference in microleakage between enamel margin and dentin margin (p<0.0001). ${\cdot}$ In enamel margin, self-etching primer systems did not show any significant difference comparing total-etching system. In denin margin, self-etching primer systems did not show any significant difference comparing one-bottle adhesive system used in combination with total-etching.

  • PDF