• 제목/요약/키워드: Dental stem cell

검색결과 139건 처리시간 0.02초

치수, 치주인대 및 치낭에서 얻어진 성체줄기세포의 조골세포로의 분화능력 평가에 관한 연구 (A study on differentiation potency of adult stem cells from pulp, periodontal ligament, and dental follicle to osteoblast)

  • 이중규;이재훈
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제36권1호
    • /
    • pp.7-15
    • /
    • 2010
  • Complex human tissues harbor stem cells and precursor cells, which are responsible for tissue development or repair. Recently, dental tissues such as dental pulp, periodontal ligament (PDL), dental follicle have been identified as easily accessible sources of undifferentiated cells. These tissues contain mesenchymal stem cells that can be differentiate into bone, cartilage, fat or muscle by exposing them to specific growth conditions. In this study, the authors procured the stem cell from pulp, PDL, and dental follicle and differentiate them into osteoblast and examine the bone induction capacity. Dental pulp stem cell (DPSC), periodontal ligament stem cell (PDLSC), and dental follicle precursor cell (DFPC) were obtained from human 3rd molar and cultured. Each cell was analyzed for presence of stem cell by fluorescence activated cell sorter (FACs) against CD44, CD105 and CD34, CD45. Each stem cell was cultured, expanded and grown in an osteogenic culture medium to allow formation of a layer of extracellular bone matrix. Osteogenic pathway was checked by alizarin red staining, alkaline phosphatase (ALP) activity test and RT-PCR for ALP and osteocalcin (OCN) gene expression. According to results from FACs, mesenchymal stem cell existed in pulp, PDL, and dental follicle. As culturing with bone differentiation medium, stem cells were differentiated to osteoblast like cell. Compare with stem cell from pulp, PDL and dental follicle-originated stem cell has more osteogenic effect and it was assumed that the character of donor cell was able to affect on differential potency of stem cell. From this article, we are able to verify the pulp, PDL, and dental follicle from extracted tooth, and these can be a source of osteoblast and stem cell for tissue engineering.

Dental-derived cells for regenerative medicine: stem cells, cell reprogramming, and transdifferentiation

  • Young-Dan Cho;Kyoung-Hwa Kim;Yong-Moo Lee;Young Ku;Yang-Jo Seol
    • Journal of Periodontal and Implant Science
    • /
    • 제52권6호
    • /
    • pp.437-454
    • /
    • 2022
  • Embryonic stem cells have been a popular research topic in regenerative medicine owing to their pluripotency and applicability. However, due to the difficulty in harvesting them and their low yield efficiency, advanced cell reprogramming technology has been introduced as an alternative. Dental stem cells have entered the spotlight due to their regenerative potential and their ability to be obtained from biological waste generated after dental treatment. Cell reprogramming, a process of reverting mature somatic cells into stem cells, and transdifferentiation, a direct conversion between different cell types without induction of a pluripotent state, have helped overcome the shortcomings of stem cells and raised interest in their regenerative potential. Furthermore, the potential of these cells to return to their original cell types due to their epigenetic memory has reinforced the need to control the epigenetic background for successful management of cellular differentiation. Herein, we discuss all available sources of dental stem cells, the procedures used to obtain these cells, and their ability to differentiate into the desired cells. We also introduce the concepts of cell reprogramming and transdifferentiation in terms of genetics and epigenetics, including DNA methylation, histone modification, and non-coding RNA. Finally, we discuss a novel therapeutic avenue for using dental-derived cells as stem cells, and explain cell reprogramming and transdifferentiation, which are used in regenerative medicine and tissue engineering.

Immunomodulatory effect of canine periodontal ligament stem cells on allogenic and xenogenic peripheral blood mononuclear cells

  • Kim, Hak-Sung;Kim, Kyoung-Hwa;Kim, Su-Hwan;Kim, Young-Sung;Koo, Ki-Tae;Kim, Tae-Il;Seol, Yang-Jo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Lee, Yong-Moo
    • Journal of Periodontal and Implant Science
    • /
    • 제40권6호
    • /
    • pp.265-270
    • /
    • 2010
  • Purpose: The aim of this study was to investigate the immunomodulatory effects of canine periodontal ligament stem cells on allogenic and xenogenic immune cells in vitro. Methods: Mixed cell cultures consisting of canine stem cells (periodontal ligament stem cells and bone marrow stem cells) and allogenic canine/xenogenic human peripheral blood mononuclear cells (PBMCs) were established following the addition of phytohemagglutinin. The proliferation of PBMCs was evaluated using the MTS assay. The cell division of PBMCs was analyzed using the CFSE assay. The apoptosis of PBMCs was assessed using the trypan blue uptake method. Results: Periodontal ligament stem cells and bone marrow stem cells inhibited the proliferation of allogenic and xenogenic PBMCs. Both periodontal ligament stem cells and bone marrow stem cells suppressed the cell division of PBMCs despite the existence of a mitogen. No significant differences in the percentages of apoptotic PBMCs were found among the groups. Conclusions: Canine periodontal ligament stem cells have an immunomodulatory effect on allogenic and xenogenic PBMCs. This effect is not a product of apoptosis of PBMCs but is caused by the inhibition of cell division of PBMCs.

Dental Pulp Stem Cell: A review of factors that influence the therapeutic potential of stem cell isolates

  • Young, Aubrey;Kingsley, Karl
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제2권2호
    • /
    • pp.61-69
    • /
    • 2015
  • Undifferentiated stem cells are being studied to obtain information on the therapeutic potential of isolates that are produced. Dental Pulp Stem Ccell (DPSC) may provide an abundant supply of highly proliferative, multipotent Mesenchymal Stem Cells (MSC), which are now known to be capable of regenerating a variety of human tissues including bone and other dental structures. Many factors influence DPSC quality and quantity, including the specific methods used to isolate, collect, concentrate, and store these isolates once they are removed. Ancillary factors, such as the choice of media, the selection of early versus late passage cells, and cryopreservation techniques may also influence the differentiation potential and proliferative capacity of DPSC isolates. This literature review concludes that due to the delicate nature of DPSC, more research is needed for dental researchers and clinicians to more fully explore the feasibility and potential for isolating and culturing DPSCs extracted from adult human teeth in order to provide more accurate and informed advice for this newly developing field of regenerative medicine.

Top 50 cited articles on dental stem cell research

  • Kodonas, Konstantinos;Fardi, Anastasia;Gogos, Christos;Economides, Nikolaos
    • Restorative Dentistry and Endodontics
    • /
    • 제45권2호
    • /
    • pp.17.1-17.10
    • /
    • 2020
  • Objectives: Citation analysis provides a unique insight into how scientific interests and research trends have changed over time. The aim of this study was to report on the 50 top-cited papers in dental stem cell research using the Science Citation Index Expanded provided by the Web of Science database to determine the academic importance of each contribution. Materials and Methods: After the screening, article title and type, total citations and citations per year, publication journal, publication year, first and senior authors, country of origin, institution, and university of reprint author were documented for the 50 top-cited articles in dental stem cell research. Keyword analysis was performed to determine which keywords were most/least popular. Results: Top 50-cited articles were cited between 179 to 2,275 times. The majority of papers were published in 2008 and originated from the United States with the highest contribution from the National Institute of Dental & Craniofacial Research. Journal of Dental Research published the highest number of top-cited articles, followed by Stem Cells and Journal of Endodontics. The greatest number of articles was published by two individual authors, Shi and Gronthos. Among 197 unique keywords, dental pulp stem cells and mesenchymal stem cells were the most frequently used. Thirty-eight of the 50 most cited articles were original articles, and 37 of them were in the field of basic science. Conclusions: Basic science studies in dental stem cell research published in high impact factor journals had the highest citation rates.

Skeletal myogenic differentiation of human periodontal ligament stromal cells isolated from orthodontically extracted premolars

  • Song, Minjung;Kim, Hana;Choi, Yoonjeong;Kim, Kyungho;Chung, Chooryung
    • 대한치과교정학회지
    • /
    • 제42권5호
    • /
    • pp.249-254
    • /
    • 2012
  • Objective: To investigate the stem cell-like characteristics of human periodontal ligament (PDL) stromal cells outgrown from orthodontically extracted premolars and to evaluate the potential for myogenic differentiation. Methods: PDL stromal cells were obtained from extracted premolars by using the outgrowth method. Cell morphological features, self-replication capability, and the presence of cell-surface markers, along with osteogenic, adipogenic, and chondrogenic differentiation, were confirmed. In addition, myogenic differentiation was induced by the use of 5-aza-2'-deoxycytidine (5-Aza) for DNA demethylation. Results: PDL stromal cells showed growth patterns and morphological features similar to those of fibroblasts. In contrast, the proliferation rates of premolar PDL stromal cells were similar to those of bone marrow and adipogenic stem cells. PDL stromal cells expressed surface markers of human mesenchymal stem cells (i.e., CD90 and CD105), but not those of hematopoietic stem cells (i.e., CD31 and CD34). PDL stromal cells were differentiated into osteogenic, adipogenic, and chondrogenic lineages. Myotube structures were induced in PDL stromal cells after 5-Aza pretreatment, but not in the absence of 5-Aza pretreatment. Conclusions: PDL stromal cells isolated from extracted premolars can potentially be a good source of postnatal stem cells for oromaxillofacial regeneration in bone and muscle.

Increased SOX2 expression in three-dimensional sphere culture of dental pulp stem cells

  • Seo, Eun Jin;Jang, Il Ho
    • International Journal of Oral Biology
    • /
    • 제45권4호
    • /
    • pp.197-203
    • /
    • 2020
  • Mesenchymal stem cells in the dental pulp exhibit a tendency for differentiation into various dental lineages and hold great potential as a major conduit for regenerative treatment in dentistry. Although they can be readily isolated from teeth, the exact characteristics of these stem cells have not been fully understood so far. When compared to two-dimensional (2D) cultures, three-dimensional (3D) cultures have the advantage of enriching the stem cell population. Hence, 3D-organoid culture and 3D-sphere culture were applied to dental pulp cells in the current study. Although the establishment of the organoid culture proved unsuccessful, the 3D-sphere culture readily initiated the stable generation of cell aggregates, which continued to grow and could be passaged to the second round. Interestingly, a significant increase in SOX2 expression was detected in the 3D-spheroid culture compared to the 2D culture. These results indicate the enrichment of the stemness-high population in the 3D-sphere culture. Thus, 3D-sphere culture may act as a link between the conventional and 3D-organoid cultures and aid in understanding the characteristics of dental pulp stem cells.

Assessment of stem cell viability in the initial healing period in rabbits with a cranial bone defect according to the type and form of scaffold

  • Kang, Seung-Hwan;Park, Jun-Beom;Kim, InSoo;Lee, Won;Kim, Heesung
    • Journal of Periodontal and Implant Science
    • /
    • 제49권4호
    • /
    • pp.258-267
    • /
    • 2019
  • Purpose: Increased bone regeneration has been achieved through the use of stem cells in combination with graft material. However, the survival of transplanted stem cells remains a major concern. The purpose of this study was to evaluate the viability of transplanted mesenchymal stem cells (MSCs) at an early time point (24 hours) based on the type and form of the scaffold used, including type I collagen membrane and synthetic bone. Methods: The stem cells were obtained from the periosteum of the otherwise healthy dental patients. Four symmetrical circular defects measuring 6 mm in diameter were made in New Zealand white rabbits using a trephine drill. The defects were grafted with 1) synthetic bone (${\beta}$-tricalcium phosphate/hydroxyapatite [${\beta}-TCP/HA$]) and $1{\times}10^5MSCs$, 2) collagen membrane and $1{\times}10^5MSCs$, 3) ${\beta}-TCP/HA+collagen$ membrane and $1{\times}10^5MSCs$, or 4) ${\beta}-TCP/HA$, a chipped collagen membrane and $1{\times}10^5MSCs$. Cellular viability and the cell migration rate were analyzed. Results: Cells were easily separated from the collagen membrane, but not from synthetic bone. The number of stem cells attached to synthetic bone in groups 1, 3, and 4 seemed to be similar. Cellular viability in group 2 was significantly higher than in the other groups (P<0.05). The cell migration rate was highest in group 2, but this difference was not statistically significant (P>0.05). Conclusions: This study showed that stem cells can be applied when a membrane is used as a scaffold under no or minimal pressure. When space maintenance is needed, stem cells can be loaded onto synthetic bone with a chipped membrane to enhance the survival rate.

Olig2-expressing Mesenchymal Stem Cells Enhance Functional Recovery after Contusive Spinal Cord Injury

  • Park, Hwan-Woo;Oh, Soonyi;Lee, Kyung Hee;Lee, Bae Hwan;Chang, Mi-Sook
    • International Journal of Stem Cells
    • /
    • 제11권2호
    • /
    • pp.177-186
    • /
    • 2018
  • Background and Objectives: Glial scarring and inflammation after spinal cord injury (SCI) interfere with neural regeneration and functional recovery due to the inhibitory microenvironment of the injured spinal cord. Stem cell transplantation can improve functional recovery in experimental models of SCI, but many obstacles to clinical application remain due to concerns regarding the effectiveness and safety of stem cell transplantation for SCI patients. In this study, we investigated the effects of transplantation of human mesenchymal stem cells (hMSCs) that were genetically modified to express Olig2 in a rat model of SCI. Methods: Bone marrow-derived hMSCs were genetically modified to express Olig2 and transplanted one week after the induction of contusive SCI in a rat model. Spinal cords were harvested 7 weeks after transplantation. Results: Transplantation of Olig2-expressing hMSCs significantly improved functional recovery in a rat model of contusive SCI model compared to the control hMSC-transplanted group. Transplantation of Olig2-expressing hMSCs also attenuated glial scar formation in spinal cord lesions. Immunohistochemical analysis showed that transplanted Olig2-expressing hMSCs were partially differentiated into Olig1-positive oligodendrocyte-like cells in spinal cords. Furthermore, NF-M-positive axons were more abundant in the Olig2-expressing hMSC-transplanted group than in the control hMSC-transplanted group. Conclusions: We suggest that Olig2-expressing hMSCs are a safe and optimal cell source for treating SCI.

The role of autophagy in cell proliferation and differentiation during tooth development

  • Ji-Yeon Jung;Shintae Kim;Yeon-Woo Jeong;Won-Jae Kim
    • International Journal of Oral Biology
    • /
    • 제48권4호
    • /
    • pp.33-44
    • /
    • 2023
  • In this review, the regulatory mechanisms of autophagy were described, and its interaction with apoptosis was identified. The role of autophagy in embryogenesis, tooth development, and cell differentiation were also investigated. Autophagy is regulated by various autophagy-related genes and those related to stress response. Highly active autophagy occurrences have been reported during cell differentiation before implantation after fertilization. Autophagy is involved in energy generation and supplies nutrients during early birth, essential to compensate for their deficient supply from the placenta. The contribution of autophagy during tooth development, such as the shape of the crown and root formation, ivory, and homeostasis in cells, was also observed. Genes control autophagy, and studying the role of autophagy in cell differentiation and development was useful for understanding human aging, illness, and health. In the future, the role of specific mechanisms in the development and differentiation of autophagy may increase the understanding of the pathological mechanisms of disease and development processes and is expected to reduce the treatment of various diseases by modulating the autophagic phenomenon.