• Title/Summary/Keyword: Dental scanner

Search Result 272, Processing Time 0.023 seconds

Comparative analysis on digital models obtained by white light and blue LED optical scanners (백색광과 청색 LED 방식의 광학스캐너로 채득된 디지털 모형의 비교분석)

  • Choi, Seog-Soon;Kim, Jae-Hong;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.36 no.1
    • /
    • pp.17-23
    • /
    • 2014
  • Purpose: The purpose of this study was to analyze and compare the relative accuracy of digitized stone models of lower full arch, using two different scanning system. Methods: Replica stone models(N=20) were produced from lower arch acrylic model. Twenty digital models were made with the white light and blue LED($Medit^{(R)}$, Korea) scanner. Two-dimensional distance between the landmarks were measured on the Delcam $CopyCAD^{(R)}$(Delcam plc, UK). Independent samples t-test was applied for comparison of the groups. All statistical analyses were performed using the SPSS software package(Statistical Package for Social Sciences for Windows, version 12.0). Results: The absolute disagreement between measurements made directly on the two different scanner-based dental digital models was 0.02~0.04mm, and was not statistically significant(P>0.05). Conclusion: The precision of the blue LED optical scanner was comparable with the digitization device, and relative accuracy was similar. However, there still is room for improvement and further standardization of dental CAD technologies.

A study on Common Errors in Digital Impressions: (An Example of CEREC$^{(R)}$ AC) (디지털 인상 채득 시 흔히 발생하는 오류에 관한 연구 - CEREC$^{(R)}$ AC의 사례 중심으로 -)

  • Kim, Jae-Hong;Kim, Ji-Hwan;Kim, Hae-Young
    • Journal of Technologic Dentistry
    • /
    • v.33 no.3
    • /
    • pp.211-218
    • /
    • 2011
  • Purpose: The purpose of the study was a quantitative evaluation of common errors in digital impression procedure using CEREC$^{(R)}$ AC system. Methods: Two-hundreds digital impression data comprising 174 inlays, 26 onlays by CEREC$^{(R)}$ AC in-office CAD/CAM system were obtained from a dental clinic. One evaluator assessed errors of the digital impression data and divided into five categories of errors: inappropriate scanner positioning (ISP), improper handling with a scanner (IHS), irregular powder arrangement (IPA), improper cavity preparation (ICP), and insufficient scanned data (ISD). Results: The most common errors were IPA(21%), and ISP and ISD were followed by 17% respectively. IHS was found in 14.5% of all digital impression data. ICP comprising only 6.5% was the rarest. Conclusion: Most errors were due to inaccurate manipulation with an intraoral scanner or improper cavity preparation for scanning. A deliberate manipulation to prevent common errors mentioned may deliver an optimal result in the digital impression procedure.

Comparison of the Internal Fitness of Prostheses Fabricated with Non-Contact Extra-Oral Scanner and Intra-Oral Video Scanner (비접촉식 구강외 스캐너와 비디오방식 구강내 스캐너를 이용하여 제작된 보철물의 내면정확도 비교)

  • Park, Jin-Young;Kim, Ji-Hwan;Jeong, Il-Do;Lee, Gwang-Young;Kim, Won-Soo
    • Journal of Technologic Dentistry
    • /
    • v.41 no.4
    • /
    • pp.263-269
    • /
    • 2019
  • Purpose: The purpose of this study was to evaluate the internal fitness of prostheses fabricated with non-contact extra-oral scanner and those fabricated with intra-oral video scanner, with a comparative accuracy analyses of their precision and trueness. Methods: A polymethyl methacrylate (PMMA) model was fabricated by replicating a master model. The prostheses in the first group were fabricated based on the PMMA model with an intra-oral video scanner (IVS group). Following the fabrication of work models with Type IV Stone that were based on the PMMA model, the prostheses in the second group were fabricated with a non-contact extra-oral scanner (ENB group). The precision and trueness of the prostheses were calculated from comparisons of the three-dimensional images of the internal surfaces of the prostheses and those of the master model. Kruskal-Wallis tests were used to determine the statistical significance, with the level of type 1 error set at 0.05. Results: Trueness (P < 0.009) and precision (P < 0.001) did not differ significantly between the ENB and IVS groups. The IVS group exhibited lower trueness values and larger precision values than the ENB group. Conclusion: Although no significant differences were found in the internal fitness of the prostheses that were fabricated by the two different scanners, the intraoral video scanner-fabricated prostheses had better trueness, whereas the non-contact extra-oral scanner-fabricated prostheses had better precision.

A Convergence Study on the Changes of Awareness and Preference according to the Clinical Application Experience of Digital Intraoral Scanners in Dental Hygienists (디지털 구강스캐너 임상적용 경험에 따른 치과위생사의 인지도 및 선호도 변화에 관한 융합연구)

  • Jang, Kyeung-Ae;Heo, Seong-Eun;Kang, Hyun-Kyung;Lee, Sook-Jeong
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.135-140
    • /
    • 2018
  • This study aimed to determine the changes of awareness and preference of dental hygienists according to the experience of using a digital intraoral scanner through a convergence study. Data collected by an online survey for dental hygienists in Busan, Gyeongnam and Gyeongbuk were analyzed by SPSS 24.0 program. When dental hygienists had an experience of using a digital intraoral scanner, the awareness and preference of digital intraoral scanners were significantly higher. The experience of using a digital intraoral scanner showed a positive correlation with the clinical application experience of digital intraoral scanners; the clinical application experience of digital intraoral scanners, with the awareness of digital intraoral scanners; and the awareness of digital intraoral scanners, with the preference of digital intraoral scanners. In conclusion, the dental hygienist's experience in clinical application of digital intraoral scanners is expected to increase the awareness and preference, resulting in the improvement of dental hygienists' work ability. Therefore, it is believed that continuous education and learning about digital oral scanners are needed.

A morphometric study on stainless steel crowns of the primary first molar using a three dimensional scanner

  • Lee, Jihyun;Shin, Teo Jeon;Kim, Young-Jae;Kim, Jung-Wook;Jang, Ki-Taeg;Lee, Sang-Hoon;Kim, Chong-Chul;Hyun, Hong-Keun
    • The Journal of the Korean dental association
    • /
    • v.54 no.6
    • /
    • pp.414-428
    • /
    • 2016
  • Objectives: The aim of this study was to assess the morphologic characteristics of two types of stainless steel crowns (SSCs) for the first primary molar using a 3D scanner. Study design: Two types of SSCs, KIDS CROWN (KC) and 3M ESPE ND-96 (ND), for the first primary molars were scanned using a 3D scanner. The mesiodistal and buccolingual diameters at the height of the contour and the cervical margin, occlusocervical diameters on the mesial, distal, buccal, and lingual aspects were measured, and the crown shape ratio, the smooth surface crown height ratio, and the cervical convergence were calculated. Results: In the crown shape ratio of the mandibular SSC, KC was larger buccolingually compared with ND. In the smooth surface crown height ratio, ND was larger than KC in all of the maxilla and mesial, distal, and lingual aspects of the mandible. ND was more convergent to the cervical mesiodistally and buccolingually compared with KC. Conclusion: In the superimposed images of the maxillary SSC, the mesiolingual and distolingual line angles of KC were more prominent compared with ND. In the mandible, ND demonstrated higher cusps and more obvious buccal developmental lobes than KC. ND showed a larger cervical undercut than KC.

  • PDF

The study on the dimensional stability of digitized dental stone replicas according to difference color of gypsum materials (치과용 모형재 색상에 따른 디지털 모형의 체적 안정성 연구)

  • Choi, Seog-Soon;Kim, Ki-Baek;Lee, Gyeong-Tak;Jeon, Jin-Hun;Kim, Jae-Hong
    • Journal of Technologic Dentistry
    • /
    • v.34 no.4
    • /
    • pp.369-377
    • /
    • 2012
  • Purpose: The aim of study was to compare the dimensional stability of digitized dental stone replica using different color of gypsum materials using a white light scanner with three-dimensional software. Methods: A master model(500B-1, Nissin dental product, Japan) with the prepared lower full arch tooth was used. Several type IV stones(white, yellow, green) were used for 30 stone casts(10 casts each) duplicated a master model of mandible. The master model and the replicas were digitized with the non-contacting white light scanner to create 3-dimensional digital models. The linear distance between the reference points were measured and analyzed on the Delcam Copycad$^{(R)}$(Delcam plc, UK) 3D graphic software. One-way analysis of variance(ANOVA) combined with a Tukey multiple-range test were used to analysis the data(${\alpha}$=0.05). Results: There were considerable differences in mean values between gypsum materials within each color(white, yellow, green), and this difference was statistically significant, p=0.001. Conclusion: Digitization of dental materials on optical scanner was affected by color. Three different color of gypsum materials showed clinically acceptable accuracies of full arch digital model produced by them. Besides, these results will have to be confirmed in further clinical studies.

3D Facial Scanners: How to Make the Right Choice for Orthodontists

  • Young-Soo Seo;Do-Gil Kim;Gye-Hyeong Lee;Kyungmin Clara Lee
    • Journal of Korean Dental Science
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • With the advances of digital scanning technology in dentistry, the interests in facial scanning in orthodontics have increased. There are many different manufacturers of facial scanners marketing to the dental practice. How do you know which one will work best for you? What questions should you be asking? We suggest a clinical guideline which may help you make an informed decision when choosing facial scanners. The characteristics of 7 facial scanners were discussed in this article. Here are some considerations for choosing a facial scanner. *Accuracy: For facial scanners to be of real value, having an appropriate camera resolution is necessary to achieve more accurate facial image representation. For orthodontic application, the scanner must create an accurate representation of an entire face. *Ease of Use: Scanner-related issues that impact their ease of use include type of light; scan type; scan time; file type generated by the scanner; unit size and foot print; and acceptance of scans by third-party providers. *Cost: Most of the expenses associated with facial scanning involve the fixed cost of purchase and maintenance. Other expenses include technical support, warranty costs, transmission fees, and supply costs. This article suggests a clinical guideline to make the right choice for facial scanner in orthodontics.

Evaluation of the reproducibility of various abutments using a blue light model scanner

  • Kim, Dong-Yeon;Lee, Kyung-Eun;Jeon, Jin-Hun;Kim, Ji-Hwan;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.328-334
    • /
    • 2018
  • PURPOSE. To evaluate the reproducibility of scan-based abutments using a blue light model scanner. MATERIALS AND METHODS. A wax cast abutment die was fabricated, and a silicone impression was prepared using a silicone material. Nine study dies were constructed using the prepared duplicable silicone, and the first was used as a reference. These dies were classified into three groups and scanned using a blue light model scanner. The first three-dimensional (3D) data set was obtained by scanning eight dies separately in the first group. The second 3D data set was acquired when four dies were placed together in the scanner and scanned twice in the second group. Finally, the third 3D data set was obtained when eight dies were placed together in the scanner and scanned once. These data were then used to define the data value using third-dimension software. All the data were then analyzed using the non-parametric Kruskal-Wallis H test (${\alpha}=.05$) and the post-hoc Mann-Whitney U-test with Bonferroni's correction (${\alpha}=.017$). RESULTS. The means and standard deviations of the eight dies together were larger than those of the four dies together and of the individual die. Moreover, significant differences were observed among the three groups (P<.05). CONCLUSION. With larger numbers of abutments scanned together, the scan becomes more inaccurate and loses reproducibility. Therefore, scans of smaller numbers of abutments are recommended to ensure better results.

Effect of the volumetric dimensions of a complete arch on the accuracy of scanners

  • Kim, Min-Kyu;Son, KeunBaDa;Yu, Beom-Young;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.361-368
    • /
    • 2020
  • PURPOSE. The present study aimed to evaluate the accuracy of a desktop scanner and intraoral scanners based on the volumetric dimensions of a complete arch. MATERIALS AND METHODS. Seven reference models were fabricated based on the volumetric dimensions of complete arch (70%, 80%, 90%, 100%, 110%, 120%, and 130%). The reference models were digitized using an industrial scanner (Solutionix C500; MEDIT) for the fabrication of a computer-aided design (CAD) reference model (CRM). The reference models were digitized using three intraoral scanners (CS3600, Trios3, and i500) and one desktop scanner (E1) to fabricate a CAD test model (CTM). CRM and CTM were then superimposed using inspection software, and 3D analysis was conducted. For statistical analysis, one-way analysis of variance was used to verify the difference in accuracy based on the volumetric dimensions of the complete arch and the accuracy based on the scanners, and the differences among the groups were analyzed using the Tukey HSD test as a post-hoc test (α=.05). RESULTS. The three different scanners showed a significant difference in accuracy based on the volumetric dimensions of the complete arch (P<.05), but the desktop scanner did not show a significant difference in accuracy based on the volumetric dimensions of the complete arch (P=.808). CONCLUSION. The accuracy of the intraoral scanners was dependent on the volumetric dimensions of the complete arch, but the volumetric dimensions of the complete arch had no effect on the accuracy of the desktop scanner. Additionally, depending on the type of intraoral scanners, the accuracy differed according to the volumetric dimensions of the complete arch.

Comparison of reproducibility of prepared tooth impression scanning utilized with white and blue light scanners (백색광과 청색광 스캐너를 이용한 지대치 인상체 스캐닝의 반복재현성 비교)

  • Jeon, Jin-Hun;Sung, Hwan-Kyung;Min, Byung-Kuk;Hwang, Jae-Sun;Kim, Ji-Hwan;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.37 no.4
    • /
    • pp.213-218
    • /
    • 2015
  • Purpose: The purpose of this study compared of reproducibility of prepared tooth impression scanning utilized with white and blue light scanners. Methods: To evaluate reproducibility with white and blue light scanners, the impression of premolar were rotated by $10^{\circ}{\sim}20^{\circ}$ and scanned. These data were compared with the first 3-D data (STL file), and the error sizes were measured (n=5). Independent t test was used to evaluation the reproducibility of impression of premolar with white versus blue light scanners through discrepancies of mean, RMS (${\alpha}=0.05$). Results: Discrepancies of mean with regard to reproducibility were $11.2{\mu}m$, $5.8{\mu}m$, respectively, with white and blue light scanners (p<0.047). And discrepancies of RMS with regard to reproducibility were $33.4{\mu}m$, $18.8{\mu}m$, respectively, with white and blue light scanners (p<0.045). Conclusion: Our results indicate a good reproducibility of prepared tooth impression digitized with blue light scanner more than that with white light scanner.