• Title/Summary/Keyword: Dental pulp cells

검색결과 127건 처리시간 0.022초

외상으로 실활된 미성숙 영구치에서의 계속된 치근 형성 (CONTINUED APEXOGENESIS ON TRAUMA INDUCED NONVITAL IMMATURE PERMANENT TOOTH)

  • 강유진;김혜영;김영진;김현정;남순현
    • 대한소아치과학회지
    • /
    • 제36권4호
    • /
    • pp.640-646
    • /
    • 2009
  • 치아에 외상을 받은 경우 치수 생활력의 상실은 흔한 일이다. 치수 생활력을 검사하는 방법으로는 임상적, 방사선학적으로 여러 가지가 있지만, 미성숙 외상치의 경우 일시적 현상과 가성 반응이 나타날 수 있으므로 치수 괴사에 대한 정확한 진단은 매우 어렵다. 생활력을 상실한 치아는 염증성 치근흡수, 치근단 낭종 등의 발생을 방지하기 위하여 치수 치료를 시행한다. 그러나 미성숙 영구치의 경우, 치수 치료를 시행 후 치근 성장이 정지될 수 있어 결과적으로 얇고 짧은 치근이 형성되어 장기적인 예후는 좋지 않다. 본 임상 증례에서는 외상으로 인하여 실활된 초기 영구치에서 치근단부의 최소한의 침습적 치근단 형성술로 계속된 치근 형성을 보여 이에 보고하는 바이다.

  • PDF

Periodontal regeneration with nano-hyroxyapatite-coated silk scaffolds in dogs

  • Yang, Cheryl;Lee, Jung-Seok;Jung, Ui-Won;Seo, Young-Kwon;Park, Jung-Keug;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • 제43권6호
    • /
    • pp.315-322
    • /
    • 2013
  • Purpose: In this study, we investigated the effect of silk scaffolds on one-wall periodontal intrabony defects. We conjugated nano-hydroxyapatite (nHA) onto a silk scaffold and then seeded periodontal ligament cells (PDLCs) or dental pulp cells (DPCs) onto the scaffold. Methods: Five dogs were used in this study. Bilateral 4 mm${\times}$2 mm (depth${\times}$mesiodistal width), one-wall intrabony periodontal defects were surgically created on the distal side of the mandibular second premolar and the mesial side of the mandibular fourth premolar. In each dog, four of the defects were separately and randomly assigned to the following groups: the PDLCcultured scaffold transplantation group (PDLC group), the DPC-cultured scaffold transplantation group (DPC group), the normal saline-soaked scaffold transplantation group, and the control group. The animals were euthanized following an 8-week healing interval for clinical, scanning electron microscopy (SEM), and histologic evaluations. Results: There was no sign of inflammation or other clinical signs of postoperative complications. The examination of cellseeded constructs by SEM provided visual confirmation of the favorable characteristics of nHA-coated silk scaffolds for tissue engineering. The scaffolds exhibited a firm connective porous structure in cross section, and after PDLCs and DPCs were seeded onto the scaffolds and cultured for 3 weeks, the attachment of well-spread cells and the formation of extracellular matrix (ECM) were observed. The histologic analysis revealed that a well-maintained grafted volume was present at all experimental sites for 8 weeks. Small amounts of inflammatory cells were seen within the scaffolds. The PDLC and DPC groups did not have remarkably different histologic appearances. Conclusions: These observations indicate that nHA-coated silk scaffolds can be considered to be potentially useful biomaterials for periodontal regeneration.

Top 50 cited articles on dental stem cell research

  • Kodonas, Konstantinos;Fardi, Anastasia;Gogos, Christos;Economides, Nikolaos
    • Restorative Dentistry and Endodontics
    • /
    • 제45권2호
    • /
    • pp.17.1-17.10
    • /
    • 2020
  • Objectives: Citation analysis provides a unique insight into how scientific interests and research trends have changed over time. The aim of this study was to report on the 50 top-cited papers in dental stem cell research using the Science Citation Index Expanded provided by the Web of Science database to determine the academic importance of each contribution. Materials and Methods: After the screening, article title and type, total citations and citations per year, publication journal, publication year, first and senior authors, country of origin, institution, and university of reprint author were documented for the 50 top-cited articles in dental stem cell research. Keyword analysis was performed to determine which keywords were most/least popular. Results: Top 50-cited articles were cited between 179 to 2,275 times. The majority of papers were published in 2008 and originated from the United States with the highest contribution from the National Institute of Dental & Craniofacial Research. Journal of Dental Research published the highest number of top-cited articles, followed by Stem Cells and Journal of Endodontics. The greatest number of articles was published by two individual authors, Shi and Gronthos. Among 197 unique keywords, dental pulp stem cells and mesenchymal stem cells were the most frequently used. Thirty-eight of the 50 most cited articles were original articles, and 37 of them were in the field of basic science. Conclusions: Basic science studies in dental stem cell research published in high impact factor journals had the highest citation rates.

임상가를 위한 특집 1 - 재생 근관 치료 (Regenerative Endodontic Treatment)

  • 정일영
    • 대한치과의사협회지
    • /
    • 제51권10호
    • /
    • pp.542-550
    • /
    • 2013
  • The immature teeth with apical periodontitis present considerable challenges to clinicians. Therefore, new treatment protocols have been suggested to overcome the problems encountered in traditional methods. Regenerative treatment (revascularization) is one of such methods. Many case reports on the revascularization of infected immature teeth have been published, and in most of them, immature teeth with even a periapical abscess continued root formation after the disinfection of the root canal system. We now believe that this continued root formation is not an exceptional incident. As a result, it appeared that apexification has been giving way to a revascularization technique, which is a new option, in treating necrotic immature teeth. These new methods appear to be based on the healing potential of stem cells. The potential of healing or regeneration of stem cells, which are located around teeth, seems to be greater than we thought before. This review summarizes the current techniques for considering regenerative endodontic treatment procedures in treating the immature permanent tooth with pulp necrosis.

백서에서 Depulpin®과 Formocresol에 대한 치수와 치근단 조직의 반응 (PULPAL AND PERIAPICAL REACT10N TO FORMOCRESOL AND DEPULPIN® IN THE RAT TEETH)

  • 문형인;김선호;황윤찬;오병주;황인남;김선헌;정선와;윤창;오원만
    • Restorative Dentistry and Endodontics
    • /
    • 제27권4호
    • /
    • pp.355-362
    • /
    • 2002
  • One fifth dilution of formocresol is usually used for pulpotomy of the primary teeth and emergency pulpotomy of the permanent teeth. However the use of formaldehyde has been subjected to criticism because it may be absorbed into the blood stream and become distributed systemically, it nay also alter the pulp tissue rendering it immunologically active, and have carcinogenic potential. Recently Depulpin$^{\circledR}$(VoCo., Germany) gains popularity as a devitalizing agent during root canal therapy in spite of high concentration of 49 % paraformaldehyde because it facilitate devitalization of pulp and make root canal therapy easier But there have been not enough publications about the reaction of pulp and periapical tissue caused by Depulpin. This study was performed to evaluate the histological changes in pulp and periapical tissue of rats after pulpotomy using formocresol and Depulpin and to elucidate the toxic effects of these agents. Thirty six Sprague-Dawley rats were anesthetized by intraperitoneal injection of ketamine Maxillary first molar teeth were used for pulpotomy with formocresol and Depulpin. Rats were sacrificed after 2 days, 4 days, 1 week, 2 weeks, 3 weeks and 4 weeks respectively. Specimens were histologically observed by light microscope changes in pulp and periapical tissue. The obtained results were as follows. 1. Formocresol group A zone of fixed tissue. in which odontoblasts could clearly be defined, was present directly underneath the pulpotomy dressing in almost all teeth of this group. This was followed by an area of necrotic tissue which resembled dried out fibrous tissue with no cellular detail except some pyknotic nuclei. In the specimens of after 2 days, 4 days, 1 week, 2 weeks in which vital tissue was present, it was separated from the fibrous area by a zone of inflammation. In the specimens of after 3 weeks and after 4 weeks, inflammatory infiltrate was in the periodontal ligament adjacent to the apical foramina of the teeth. 2. Depulpin$^{\circledR}$ group The area of necrotic tissue which had no cells and fibers, was present adjacent to the dressing. This was followed by dried out fibrous tissue with no cellular details except some pyknotic nuclei, A short stump of vital pulp with odontoblasts was present at the end of the canal after 2 days. Inflammatory infiltrate was in the periodontal ligament after 4 days and after 1week. Severe root resolution and necrosis of periapical tissue opposite the root resorption site were defined after 2 weeks and after 3 weeks. Periapical lesion which consist of necrotic tissue surrounded by a fibrous connective wall, was found after 4 weeks. The results indicated that Depulpin can cause more adverse reaction to the dental pulp and periapical tissue than formocresol, and further studies are needed for its clinical use with safety.

인간치수세포 분화과정에서 과산화수소에 대한 Lysyl Oxidase의 역할 (Effects of Relative Lysyl Oxidase and Hydrogen Peroxide on Odontoblastic Differentiation)

  • 이화정
    • 치위생과학회지
    • /
    • 제13권3호
    • /
    • pp.321-329
    • /
    • 2013
  • 과산화수소는 치아미백에 널리 사용되는 물질로 과다 사용시 치수세포에 손상을 일으킬 수 있다. 본 연구의 목적은 활성산소인 과산화수소에 의해 유도되는 상아모세포의 단계별 분화와 LOX isoforms과의 관계를 밝히고자 하였다. 치수세포에 분화유도 배지와 과산화수소를 시간과 농도별로 처리한 후 LOX 유전자 발현은 RT-PCR로 측정하였고, LOX enzyme activity는 고감도 형광분석으로 확인하였다. 또한 가장 많은 발현억제를 보인 LOX와 LOXL을 선택하여 siRNA 처리 후 분화표지자의 발현변화와 LOX enzyme activity를 확인하였다. 1. 과산화수소 처리에 따라 LOX, LOXL, LOXL3 mRNA 발현은 농도와 시간 의존적으로 감소하였으나 LOXL2와 LOXL4 mRNA는 변화가 없었다. 2. 과산화수소 처리된 LOX enzyme activity는 0.3 mM과 24시간에서 가장 많은 증가를 보였다. 3. ALP, OPN, OCN의 mRNA 발현은 LOX와 LOXL siRNAs 모두에서 억제되었고, DMP1과 DSPP는 LOX siRNA에서 더 많은 억제 효과를 보였다. 하지만, 분화단계별(초기, 중기, 말기) 차이는 보이지 않았다. 4. LOX와 LOXL siRNAs를 처리하여 LOX enzyme activity를 측정한 결과 LOX siRNA를 처리한 실험군에서 더 많은 억제효과를 보였다. 이러한 결과는 상아모세포 성장과 분화과정에 낮은 농도의 과산화수소가 분화를 유도하고 여기에 LOX가 관련됨을 알 수 있었다. 결론적으로, 과산화수소는 LOX 유전자 발현조절을 통해 치수세포의 성장과 분화에서 중추적인 역할을 할 것이라고 생각된다.

NITRIC OXIDE와 치수 (NITRIC OXIDE AND DENTAL PULP)

  • 김영경;김성교
    • Restorative Dentistry and Endodontics
    • /
    • 제27권5호
    • /
    • pp.543-551
    • /
    • 2002
  • Nitric oxide (NO) is a small molecule (mol. wt. 30 Da) and oxidative free radical. It is uncharged and can therefore diffuse freely within and between cells across membrane. Such characteristics make it a biologically important messenger in physiologic processes such as neurotransmission and the control of vascular tone. NO is also highly toxic and is known to acts as a mediator of cytotoxicity during host defense. NO is synthesized by nitric oxide synthase (NOS) through L-arginine/nitric oxide pathway which is a dioxygenation process. NO synthesis involves several participants, three co-substrates, five electrons, five co-factors and two prosthetic groups. Under normal condition, low levels of NO are synthesized by type I and III NOS for a short period of time and mediates many physiologic processes. Under condition of oxidant stress, high levels of NO are synthesized by type II NOS and inhibits a variety of metabolic processes and can also cause direct damage to DNA. Such interaction result in cytostasis, energy depletion and ultimately cell death. NO has the potential to interact with a variety of intercellular targets producing diverse array of metabolic effects. It is known that NO is involved in hemodynamic regulation, neurogenic inflammation, re-innervation, management of dentin hypersensitivity on teeth. Under basal condition of pulpal blood flow, NO provides constant vasodilator tone acting against sympathetic vasoconstriction. Substance P, a well known vasodilator, was reported to be mediated partly by NO, while calcitonin-gene related peptide has provided no evidence of its relation with NO. This review describes the roles of NO in dental pulp in addition to the known general roles of it.

Differentiation Inductions Altered Telomere Length and Telomerase Activity in Human Dental Pulp-Derived Mesenchymal Stem Cell

  • Lee, Hyeon-Jeong;Jeon, Ryoung-Hoon;Park, Byung-Joon;Jang, Si-Jung;Lee, Sung-Lim;Rho, Gyu-Jin;Kim, Seung-Joon;Lee, Won-Jae
    • 한국동물생명공학회지
    • /
    • 제34권2호
    • /
    • pp.93-99
    • /
    • 2019
  • Telomeres are known as a specialized region in the end of chromosomes to protect DNA destruction, but their lengths are shortened by repetition of cell division. This telomere shortening can be preserved or be elongated by telomerase and TERT expression. Although a certain condition in the cells may affect to the cellular and molecular characteristics, the effect of differentiation induction to telomere length and telomerase activity in mesenchymal stem cells (MSCs) has been less studied. Therefore, the present study aimed to uncover periodical alterations of telomere length, telomerase activity and TERT expression in the dental pulp-derived MSCs (DP-MSCs) under condition of differentiation inductions into adipocytes and osteoblasts on a weekly basis up to 3 weeks. Shortening of telomere was significantly (p < 0.05) identified from early-middle stages of both differentiations in comparison with undifferentiated DP-MSCs by non-radioactive chemiluminescent assay and qRT-PCR method. Telomere length in undifferentiated DP-MSCs was 10.5 kb, but the late stage of differentiated DP-MSCs which can be regarded as the adult somatic cell exhibited 8.1-8.6 kb. Furthermore, the relative-quantitative telomerase repeat amplification protocol or western blotting presented significant (p < 0.05) decrease of telomerase activity since early stages of differentiations or TERT expression from middle stages of differentiations than undifferentiated state, respectively. Based on these results, it is supposed that shortened telomere length in differentiated DP-MSCs was remained along with prolonged differentiation durations, possibly due to weakened telomerase activity and TERT expression. We expect that the present study contributes on understanding differentiation mechanism of MSCs, and provides standardizing therapeutic strategies in clinical application of MSCs in the animal biotechnology.

Identification of stemness and differentially expressed genes in human cementum-derived cells

  • Lee, EunHye;Kim, Young-Sung;Lee, Yong-Moo;Kim, Won-Kyung;Lee, Young-Kyoo;Kim, Su-Hwan
    • Journal of Periodontal and Implant Science
    • /
    • 제51권5호
    • /
    • pp.329-341
    • /
    • 2021
  • Purpose: Periodontal treatment aims at complete regeneration of the periodontium, and developing strategies for periodontal regeneration requires a deep understanding of the tissues composing the periodontium. In the present study, the stemness characteristics and gene expression profiles of cementum-derived cells (CDCs) were investigated and compared with previously established human stem cells. Candidate marker proteins for CDCs were also explored. Methods: Periodontal ligament stem cells (PDLSCs), pulp stem cells (PULPSCs), and CDCs were isolated and cultured from extracted human mandibular third molars. Human bone marrow stem cells (BMSCs) were used as a positive control. To identify the stemness of CDCs, cell differentiation (osteogenic, adipogenic, and chondrogenic) and surface antigens were evaluated through flow cytometry. The expression of cementum protein 1 (CEMP1) and cementum attachment protein (CAP) was investigated to explore marker proteins for CDCs through reverse-transcription polymerase chain reaction. To compare the gene expression profiles of the 4 cell types, mRNA and miRNA microarray analysis of 10 samples of BMSCs (n=1), PDLSCs (n=3), PULPSCs (n=3), and CDCs (n=3) were performed. Results: The expression of mesenchymal stem cell markers with a concomitant absence of hematopoietic markers was observed in PDLSCs, PULPSCs, CDCs and BMSCs. All 4 cell populations also showed differentiation into osteogenic, adipogenic, and chondrogenic lineages. CEMP1 was strongly expressed in CDCs, while it was weakly detected in the other 3 cell populations. Meanwhile, CAP was not found in any of the 4 cell populations. The mRNA and miRNA microarray analysis showed that 14 mRNA genes and 4 miRNA genes were differentially expressed in CDCs vs. PDLSCs and PULPSCs. Conclusions: Within the limitations of the study, CDCs seem to have stemness and preferentially express CEMP1. Moreover, there were several up- or down-regulated genes in CDCs vs. PDLSCs, PULPSCs, and BMSCs and these genes could be candidate marker proteins of CDCs.

상아모세포 관련 유전자, OD314의 발현과 기능 연구 (EXPRESSION AND FUNCTIONAL CHARACTERIZATION OF ODONTOBLAST-DERIVED GENE: OD314)

  • 김두현;김흥중;정문진;손호현;박주철
    • Restorative Dentistry and Endodontics
    • /
    • 제29권4호
    • /
    • pp.399-408
    • /
    • 2004
  • Odontoblasts are responsible for the formation and maintenance of dentin. They are known to synthesize unique gene products including dentin sialophosphoprotein (DSPP). Another unique genes of the cells remain unclear. OD314 was isolated from the odontoblasts/pulp cells of rats and partially characterized as an odontoblast-enriched gene (Dey et al., 2001). This study aimed to elucidate the biological function of OD314, relating to odontoblast differentiation and dentinogenesis. After determining the open reading frame (ORP) of OD314 by transient transfection analysis using green fluorescent protein (GPP) expression vector, mRNA in-situ hybridization, immunohistochemistry, reverse transcription-polymerase chain reaction (RT-PCR) and western analysis were performed. The results were as follows: 1. In in-situ hybridization, OD314 mRNAs were expressed in odontoblasts of developing coronal and root pulp. 2. OD314 was a novel protein encoding 154 amino acids, and the protein was mainly expressed in cytoplasm by transient transfection analysis. 3. Mineralized nodules were associated with multilayer cell nodules in the culture of human dental pulp cells and first detected from day 21 using alizarin-red S staining. 4. In RT-PCR analysis, OD314, osteocalcin (OC) and DSPP strongly expressed throughout 28 days of culture. Whereas, osteonectin (ON) mRNA expression stayed low up to day 14, and then gradually decreased from day 21. 5. Western blots showed an approximately 17 kDa band. OD314 protein was expressed from the start of culture and then increased greatly from day 21. In conclusion, OD314 is considered as an odontoblast-enriched gene and may play important roles in odontoblast differentiation and dentin mineralization.