• Title/Summary/Keyword: Dental pulp cells

Search Result 125, Processing Time 0.027 seconds

Increase of Grb2 and Ras Proteins and Expression of Growth Factors in LPS Stimulated Odontoblast-like Dental Pulp Cells

  • Jeong, Soon-Jeong;Jeong, Moon-Jin
    • Applied Microscopy
    • /
    • v.43 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • Inflammatory cells express the inflammatory cytokines and growth factors induced by lipopolysaccharide (LPS). Odontoblasts are located at the pulp-dentin interface and extend their cell processes far into the dentin where they are the first cells to encounter microorganisms or their products. Therefore, this study examined the expression of some growth factors related to the signal pathway, such as growth factor receptor binding protein 2 (Grb2)-Ras in odontoblast-like dental pulp cells, after a treatment with LPS. After 60 minutes, the mRNA and protein expression levels of Grb2 and Ras were higher in the LPS-treated cells than in the control cells. The level of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) mRNA expression was increased significantly to a level similar to that of Grb2 and Ras at 60 minutes. The platelet-derived growth factor-AA (PDGF-AA) mRNA level was expressed strongly in the odontoblast like dental pulp cells without an association with LPS stimulation. Scanning electron microscopy revealed many extensions of the cytoplasmic processes and the number of processes increased gradually at 30, 60 and 90 minutes after LPS stimulation. From these results VEGF and bFGF expression might be induced through the Grb2-Ras signal transduction pathway in LPS treated odontoblasts.

Stem cell-derived exosomes for dentin-pulp complex regeneration: a mini-review

  • Dina A. Hammouda;Alaa M Mansour;Mahmoud A. Saeed;Ahmed R. Zaher;Mohammed E. Grawish
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.2
    • /
    • pp.20.1-20.13
    • /
    • 2023
  • This mini-review was conducted to present an overview of the use of exosomes in regenerating the dentin-pulp complex (DPC). The PubMed and Scopus databases were searched for relevant articles published between January 1, 2013 and January 1, 2023. The findings of basic in vitro studies indicated that exosomes enhance the proliferation and migration of mesenchymal cells, as human dental pulp stem cells, via mitogen-activated protein kinases and Wingless-Int signaling pathways. In addition, they possess proangiogenic potential and contribute to neovascularization and capillary tube formation by promoting endothelial cell proliferation and migration of human umbilical vein endothelial cells. Likewise, they regulate the migration and differentiation of Schwann cells, facilitate the conversion of M1 pro-inflammatory macrophages to M2 anti-inflammatory phenotypes, and mediate immune suppression as they promote regulatory T cell conversion. Basic in vivo studies have indicated that exosomes triggered the regeneration of dentin-pulp-like tissue, and exosomes isolated under odontogenic circumstances are particularly strong inducers of tissue regeneration and stem cell differentiation. Exosomes are a promising regenerative tool for DPC in cases of small pulp exposure or for whole-pulp tissue regeneration.

Mineralization-inducing potentials of calcium silicate-based pulp capping materials in human dental pulp cells

  • Kang, Sohee
    • Journal of Yeungnam Medical Science
    • /
    • v.37 no.3
    • /
    • pp.217-225
    • /
    • 2020
  • Background: This study was performed to provide a long-term bacterial seal through the formation of reparative dentin bridge, calcium silicate-based pulp capping materials have been used at sites of pulpal exposure. The aim of this study was to evaluate the mineralization-inducing potentials of calcium silicate-based pulp capping materials (ProRoot MTA [PR], Biodentine [BD], and TheraCal LC [TC]) in human dental pulp cells (HDPCs). Methods: Specimens of test materials were placed in deionized water for various incubation times to measure the pH variation and the concentration of calcium released. The morphology of HDPCs cultured on the specimens was examined using a confocal laser scanning microscope (CLSM). Alizarin red S staining and alkaline phosphatase assays were used to evaluate mineralization-inducing potentials of the capping materials. Results: BD showed the highest calcium release in all test periods, followed by PR and TC. (p<0.05). All experimental groups showed high alkalinity after 1 day, except at 14 days. BD showed the highest cell viability compared with PR and TC after 1 and 3 days, while TC showed the lowest value (p<0.05). The CLSM analysis showed that cells were well adhered and expressed actin filaments for all pulp capping materials. Mineralization by PR and BD groups was higher than that by TC group based on alizarin red S staining. BD showed significantly higher alkaline phosphatase activity than PR and TC, while TC showed the lowest value (p<0.05). Conclusion: Within the limitations of the in vitro study, BD had higher mineralization-inducing potential than PR and TC.

Dental Pulp Stem Cell: A review of factors that influence the therapeutic potential of stem cell isolates

  • Young, Aubrey;Kingsley, Karl
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.2
    • /
    • pp.61-69
    • /
    • 2015
  • Undifferentiated stem cells are being studied to obtain information on the therapeutic potential of isolates that are produced. Dental Pulp Stem Ccell (DPSC) may provide an abundant supply of highly proliferative, multipotent Mesenchymal Stem Cells (MSC), which are now known to be capable of regenerating a variety of human tissues including bone and other dental structures. Many factors influence DPSC quality and quantity, including the specific methods used to isolate, collect, concentrate, and store these isolates once they are removed. Ancillary factors, such as the choice of media, the selection of early versus late passage cells, and cryopreservation techniques may also influence the differentiation potential and proliferative capacity of DPSC isolates. This literature review concludes that due to the delicate nature of DPSC, more research is needed for dental researchers and clinicians to more fully explore the feasibility and potential for isolating and culturing DPSCs extracted from adult human teeth in order to provide more accurate and informed advice for this newly developing field of regenerative medicine.

Bioactivity of endodontic biomaterials on dental pulp stem cells through dentin

  • Javid, Bahar;Panahandeh, Narges;Torabzadeh, Hassan;Nazarian, Hamid;Parhizkar, Ardavan;Asgary, Saeed
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.1
    • /
    • pp.3.1-3.10
    • /
    • 2020
  • Objectives: This study investigated the indirect effect of calcium-enriched mixture (CEM) cement and mineral trioxide aggregate (MTA), as 2 calcium silicate-based hydraulic cements, on human dental pulp stem cells (hDPSCs) through different dentin thicknesses. Materials and Methods: Two-chamber setups were designed to simulate indirect pulp capping (IPC). Human molars were sectioned to obtain 0.1-, 0.3-, and 0.5-mm-thick dentin discs, which were placed between the 2 chambers to simulate an IPC procedure. Then, MTA and CEM were applied on one side of the discs, while hDPSCs were cultured on the other side. After 2 weeks of incubation, the cells were removed, and cell proliferation, morphology, and attachment to the discs were evaluated under scanning electron microscopy (SEM). Energy-dispersive X-ray (EDXA) spectroscopy was performed for elemental analysis. Alkaline phosphatase (ALP) activity was assessed quantitatively. The data were analyzed using the Kruskal-Wallis and Mann-Whitney tests. Results: SEM micrographs revealed elongated cells, collagen fibers, and calcified nucleations in all samples. EDXA verified that the calcified nucleations consisted of calcium phosphate. The largest calcifications were seen in the 0.1-mm-thick dentin subgroups. There was no significant difference in ALP activity across the CEM subgroups; however, ALP activity was significantly lower in the 0.1-mm-thick dentin subgroup than in the other MTA subgroups (p < 0.05). Conclusions: The employed capping biomaterials exerted biological activity on hDPSCs, as shown by cell proliferation, morphology, and attachment and calcific precipitations, through 0.1- to 0.5-mm-thick layers of dentin. In IPC, the bioactivity of these endodontic biomaterials is probably beneficial.

MAPK Signal Pathways in Regulation of Odontoblastic Differentiation by Induction of HO-1 in Human Dental Pulp Cells (MAPK 경로를 통한 HO-1과 분화 표지자 발현)

  • Kim, Sun-Ju
    • Journal of dental hygiene science
    • /
    • v.10 no.4
    • /
    • pp.227-231
    • /
    • 2010
  • The purpose of this study was to examine the MAPK signaling pathways involved in regulation of HO-1 and the odontoblast differentiation markers during the odontoblastic differentiation for HDPCs. We evaluated cell growth by MTT assay and differentiation marker mRNA expression by RT-PCR. When the cells were treated with p38 inhibitor (SB203580, $10{\mu}M$), JNK inhibitor (SP600125, $10{\mu}M$), and ERK inhibitor (PD98059, $20{\mu}M$) for 7 days, cell growth and expression of HO-1 and differentiation makers were significantly decreased in HDPCs. Our results suggest that odontoblastic differentiation is positively regulated by HO-1 induction in HDPCs via ERK, JNK, and p38 signaling pathways. Thus, pharmacological HO-1 induction might represent a potent therapeutic approach for pulp capping and the regeneration of HDPCs.

Effects of nanoscale ridge/groovepattern arrayed surface on in vitro differentiation of multi-potent pulp cells derived from human supernumerary teeth

  • Kim, Daehwan;Jo, Hwansung;Lee, Jingu;Kim, Keesung;Roh, Sangho
    • International Journal of Oral Biology
    • /
    • v.38 no.4
    • /
    • pp.161-167
    • /
    • 2013
  • Human dental pulp stem cells (DPSCs) are multi-potent mesenchymal stem cells that have several differentiation potentials. An understanding of thetissues that differentiate from these cells can provide insights for future regenerative therapeutics and tissue engineering strategies. The mesiodens is the most frequent form of supernumerary tooth from which DPSCs can differentiate into several lineages similar to cells from normal deciduous teeth. Recently, it has been shown that nanoscale structures can affect stem cell differentiation. In our presentstudy, we investigated the effects of a 250-nm nanoscale ridge/groove pattern array on the osteogenic and adipogenic differentiation of dental pulp cells from mesiodenscontaining human DPSCs. To this end, the expression of lineage specific markers after differentiation induction was analyzed by lineage specific staining and RT-PCR. The nanoscale pattern arrayed surface showed apositive effect on the adipogenic differentiation of DPSCs. There was no difference between nanoscale pattern arrayed surface and conventional surface groups onosteogenic differentiation. In conclusion, the nanoscale ridge/groove pattern arrayed surface can be used to enhance the adipogenic differentiation of DPSCs derived from mesiodens. This finding provides an improved understanding of the effects of topography on cell differentiation as well as the potential use of supernumerary tooth in regenerative dental medicine.

Stimulatory Effect of N-acetylcysteine on Odontoblastic Differentiation

  • Jun, Ji-Hae;Lee, Hye-Lim;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.33 no.4
    • /
    • pp.187-195
    • /
    • 2008
  • Reparative dentine formation requires newly differentiated odontoblast-like cells. Therefore, identification of the molecule that stimulates the odontogenic differentiation of precursor cells in the tooth pulp will be helpful for the development of strategies to repair damaged pulp. In this study, we examined the effect of N-acetylcysteine (NAC) on the odontogenic differentiation of MDPC-23 cells, a mouse odontoblast-like cell line derived from dental papilla, and primary cultured rat dental papilla cells (RDPCs). NAC (1-30 mM) suppressed production of reactive oxygen species in MDPC-23 cells in a dose-dependent manner. Although 5 to 20 mM NAC did not alter MDPC-23 cell proliferation, 1 or 30 mM NAC significantly inhibited it. NAC enhanced mineralized nodule formation and the expression of several odontoblast differentiation-associated genes in both RDPCs and MDPC-23. This NAC stimulatory effect was significant, even at concentrations lower than 1 mM. However, NAC did not stimulate expression of bone morphogenetic protein-2, -4, or -7, which are known to enhance odontogenic differentiation. Since reactive oxygen species are also involved in the pulp toxicity of resin-based restorative materials, these results suggest that NAC may be a promising candidate for supplementation of dental restorative materials in order to enhance reparative dentine formation.

Characterization of Human Dental Pulp Cells from Supernumerary Teeth by Using Flow Cytometry Analysis (유세포 분석을 통한 과잉치 치수 유래 세포의 줄기세포 특성 연구)

  • You, Yonsook;Kim, Jongbin;Shin, Jisun;Lee, June-Haeng;Kim, Jongsoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.3
    • /
    • pp.337-342
    • /
    • 2019
  • The aim of this study was to analyze cells from human dental pulp tissue of impacted supernumerary teeth as stem cells with flow cytometry. Human dental pulp cells from 15 supernumerary teeth were identified their characteristics as stem cells by expression of mesenchymal stem cell markers through flow cytometry analysis at passage 3 and passage 10. Cluster of differentiation (CD) 73, CD 90, CD 34, CD 45 and STRO-1 cell surface markers were used to figure out characteristics of dental pulp stem cells from supernumerary teeth. At passage 3, the cell population showed positive expression of CD 73, CD90 and STRO-1, lacked expression of CD 34 and CD 45. At passage 10, CD 73, CD 90 and STRO-1 showed positive expression while CD 34 and CD 45 showed negative expression. This study indicated that dental pulp stem cells of supernumerary teeth had the properties of mesenchymal stem cells at both early and late passage. Impacted supernumerary teeth could be considered as a noble source of stem cells because of rapid growth and maintaining characteristics of stem cells until late passage.

Gene Expression of Exposure to Mineral Trioxide Aggregate(MTA) on Dental Pulp Cells (Mineral Trioxide Aggregate(MTA)에 의한 치수세포의 유전자 발현변화)

  • Choi, Yu-Seok;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.1
    • /
    • pp.30-38
    • /
    • 2008
  • Dental pulp cells are assumed to possess the capacity to elaborate both bone and dentin matrix under the pathological conditions following tooth injury. The purpose of this study is to examine the effects of mineral trioxide aggregate (MTA) on various gene expression regarding dentinogenesis and cell viability assay in cultured primary human dental pulp cells. The author also examined the effects of this material on cellular alkaline phosphatase activity as a potential indicator of dentinogenesis. For gene expression on MTA, reverse transcriptase polymerase chain reaction was performed using primer sets of glyceraldehyde-3-phosphate dehydrogenase, type I collagen, alkaline phosphatase(ALP), osteonectin, and dentin sialoprotein after 2 and 4 days. Cell viability assay showed that the proportion of MTA-treated pulp cells which had been exposed for 5 days to MTA was higher than that of the control cells. Among the genes investigated in this study, ALP and osteonectin(SPARC) were increased in MTA treated group than in control. These findings suggest that this dental pulp culture system may be useful in the future as a model for studying the mechanisms underlying dentin regeneration after the treatment with MTA. Exposure to MTA material would not induce cytotoxic response in the dental pulp cells. In addition, MTA could influence the behavior of human pulp cells by increasing the ALP activity and SPARC synthesis.

  • PDF