• Title/Summary/Keyword: Dental implant, Abutment screw

Search Result 167, Processing Time 0.019 seconds

Effects of crown retrieval on implants and the surrounding bone: a finite element analysis

  • Ozkir, Serhat Emre;Unal, Server Mutluay;Yurekli, Emel;Guven, Sedat
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.2
    • /
    • pp.131-136
    • /
    • 2016
  • PURPOSE. The aim of this study was to observe stress concentration in the implant, the surrounding bone, and other components under the pull-out force during the crown removal. MATERIALS AND METHODS. Two 3-dimensional models of implant-supported conventional metal ceramic crowns were digitally constructed. One model was designed as a vertically placed implant ($3.7mm{\times}10mm$) with a straight abutment, and the other model was designed as a 30-degree inclined implant ($3.7mm{\times}10mm$) with an angled abutment. A pull-out force of 40 N was applied to the crown. The stress values were calculated within the dental implant, the abutment, the abutment screw, and the surrounding bone. RESULTS. The highest stress concentration was observed at the coronal portion of the straight implant (9.29 MPa). The stress concentrations at the cortical bone were lower than at the implants, and maximum stress concentration in bone structure was 1.73 MPa. At the abutment screws, the stress concentration levels were similiar (3.09 MPa and 3.44 MPa), but the localizations were different. The stress at the angled abutment was higher than the stress at the straight abutment. CONCLUSION. The pull-out force, applied during a crown removal, did not show an evident effect in bone structure. The higher stress concentrations were mostly observed at the implant and the abutment collar. In addition, the abutment screw, which is the weakest part of an implant system, also showed stress concentrations. Implant angulation affected the stress concentration levels and localizations. CLINICAL IMPLICATIONS. These results will help clinicians understand the mechanical behavior of cement-retained implant-supported crowns during crown retrieval.

STRESS OF DENTAL IMPLANT ABUTMENT SCREW BY THE TIGHTENING TORQUE (조임 회전력에 따른 치과 임플랜트 지대나사의 응력에 관한 연구)

  • Lee, Won-Joo;Lim, Ju-Hwan;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.5
    • /
    • pp.721-737
    • /
    • 1998
  • Abutment screw loosening of implant restorations is a common problem in the treatment of dental implant. The purpose of this study was to calculate stress and preload from the elongation measurements and to determine maximum tightening torque without plastic deformation of the screw. The length of each gold alloy UCLA screw was measured after tightening to the manufacturer's recommended torque of 32 N-cm. Similarity, titanium UCLA screws were measured after tightening to the manufacturer's recommended torque of 20 N-cm. Loosening torque was also measured after tightening to 32 N-cm torque for gold alloy abutment screws and 20 N-cm for titanium abutment screws. The results were as follows ; 1. There was a regressive relationship between screw elongation and tightening torque (gold alloy : $r^2=0.987$, titanium : $r^2=0.978$), and the mean preload calculated from elongation measurements was $501.11{\pm}26.85\;N$ (gold alloy) and $399.43{\pm}7.61\;N$ (titanium). 2. Stress calculated for the gold alloy and titanium screws at maximum recommended tightening torque was less than 60% of their respective yield strengths and with-in the elastic range. Maximum tightening torque without plastic deformation was 61 N-cm (gold alloy) and 39 N-cm (titanium). 3. For titanium screws, there was a significant difference between loosening after trial 1 and loosening after trials 2 to 5 (p<0.05). No statistically significant difference was seen in mean loosening torques between the first and subsequent trials for gold alloy screws.

  • PDF

Three dimensional stress analysis of implant-supported prosthesis with various misfit (적합도가 다른 임플랜트 지지 보철물의 삼차원적 응력 분석)

  • Yang, Hong-So;Chung, Hyun-Ju;Park, Yeong-Joon;Park, Sang-Won;Kunavisarut, Chatchai
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.17 no.4
    • /
    • pp.307-314
    • /
    • 2001
  • To evaluate the effect of misfit in two implant-supported fixed partial dentures in the posterior of the mandible, variations of the standard finite element models were made by changing the location of the gap as follows: 1) no gap present; 2) located between the gold cylinder and the abutment on the distal implant; 3) gap located between the gold cylinder and the abutment on the mesial implant. The results of this study were as follows: 1. When the location of the gap was close to the load applied on the prosthesis, the stress in the prosthesis, implant components and surrounding bone increased. 2. The presence of cantilever increased the stress in the prosthesis, implant and surrounding bone significantly, regardless of the presence of the gap. 3. When there was a gap between the prosthesis and abutment, the stress in the bone around the implant increased. 4. When passive fit was achieved, the stress was distributed widely in each component with less peak stress in each component. 5. The inner structures of the implant components, the gold screw and the abutment screw bear more stress when the prosthesis did not exhibit passive fit with the abutments than when passive fit was present.

  • PDF

Effect of morphology and diameter of implant fixture-abutment connection on mechanical failure of implants (임플랜트 고정체-지대주 연결부의 형태와 직경이 임플랜트의 기계적 실패에 미치는 영향)

  • Yun, Bo-Hyeok;Shin, Hyon-Mo;Yun, Mi-Jung;Huh, Jung-Bo;Jeong, Chang-Mo;Kang, Eun-Sook
    • The Journal of the Korean dental association
    • /
    • v.53 no.9
    • /
    • pp.644-655
    • /
    • 2015
  • Purpose: This study was conducted to evaluate the effect of the fixture abutment connection type and diameter on the screw joint stability in external butt joint for 2nd surgery and internal cone connected type implant system for 1st and 2nd surgery using ultimate fracture strength. Materials and Methods: USII system, SSII system and GSII system of Osstem Implant were used. Each system used the fixture with two different diameters and cement-retained abutments, and tungsten carbide / carbon coated abutment screws were used. Disc shaped stainless steel metal tube was attached using resin-based temporary cement. The experimental group was divided into seven subgroups, including the platform switching shaped specimen that uses a regular abutment in the fixture with a wide diameter in USII system. A static load was increased to the metal tube at 5mm deviated point from the implant central axis until it reached the compression bending strength at a rate of 1mm/min. Then the deformations and patterns of fracture in threaded connection were compared. Results and Conclusion: 1. In the comparison between the Regular diameter, compression bending strength of SSII system was higher than USII system and GSII system. There was no significant difference between USII system and GSII system. 2. In the comparison between wide diameter, compression bending strength was increased in the order of GSII system, USII system, and SSII system. 3. In comparison between the implant diameter, compression bending strength of the wide diameter was greater than the regular diameter in any system(P<0.05). 4. There was no significant difference between the platform switching (III group) and the regular diameter (I group) in USII system. 5. In USII system, fracture of abutment screw and deformation of both fixture and abutment were observed in I, II and III subgroups. 6. Failure pattern of SSII system, which was the fracture of abutment screw and deformation of the abutment and fixture, was observed in both IV and V subgroups. Fracture of some fixtures was observed in subgroup V. 7. Failure pattern of GSII system, which was the fracture of the abutment screw and deformation of the fixture and the abutment, was observed in both VI and VII subgroups. Apart from other subgroups, subgroup VII demonstrated no bending neither the fracture at the top of the fixture. The compressive deformation of internal slope in the fixture was the only thing observed in subgroup VII.

Screw Joint Stability under Cyclic Loading of Zirconia Implant Abutments (지르코늄 임플란트 지대주의 나사결합부 안정성에 관한 연구)

  • Lee, Mi-Soon;Suh, Kyu-Won;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.164-173
    • /
    • 2009
  • Purpose: The purpose of this study was to evaluate the effect of abutment material on screw-loosening before and after cyclic loading. Among the different materials of abutments, zirconia and metal abutment were used. Material and methods: Two types of implant systems: external butt joint(US II, Osstem Implant, Korea) and internal conical joint(GS II, Osstem Implant, Korea) were used. In each type, specimens were divided into two different kinds of abutments: zirconia and metal(n=5). The implant was rigidly held in a special holding to device ensure fixation. Abutment was connected to 30 Ncm with digital torque gauge, and was retightened in 30 Ncm after 10 minutes. The initial removal torque values were measured. The same specimens were tightened in 30 Ncm again and held in the cycling loading simulator(Instron, USA) according to ISO/FPIS 1480. Cycling loading tests were performed at loads 10 to 250 N, for 1 million cycles, at 14 Hz,(by subjecting sinusoidal wave from 10 to 250 N at a frequency of 14 Hz for 1 million cycles,) and then postload removal torque values were evaluated. Results: 1. In all samples, the removal values of abutment screw were lower than tightening torque values(30 Ncm), but the phenomenon of the screw loosening was not observed. 2. In both of the implant systems, initial and postload removal torque of zirconia abutment were significantly higher than those of metal abutment(P<.05). 3. In both of the implant systems, the difference in removal torque ratio between zirconia abutment and metal abutment was not significant(P>.05). 4. In metal abutments, the removal torque ratio of GS II system(internal conical joint system) was lower than that of US II system(external butt joint system)(P<.05). 5. In zirconia abutments, the difference in removal torque ratio between the two implant systems was not significant(P>.05). Conclusion: Zirconia abutment had a good screw joint stability in the condition of one million cycling loading.

Biomechanical behavior of CAD/CAM cobalt-chromium and zirconia full-arch fixed prostheses

  • Barbin, Thais;Silva, Leticia Del Rio;Veloso, Daniele Valente;Borges, Guilherme Almeida;Presotto, Anna Gabriella Camacho;Barao, Valentim Adelino Ricardo;Groppo, Francisco Carlos;Mesquita, Marcelo Ferraz
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.329-337
    • /
    • 2020
  • PURPOSE. To verify the influence of computer-aided design/computer-aided manufacturing (CAD/CAM) implant-supported prostheses manufactured with cobalt-chromium (Co-Cr) and zirconia (Zr), and whether ceramic application, spark erosion, and simulation of masticatory cycles modify biomechanical parameters (marginal fit, screw-loosening torque, and strain) on the implant-supported system. MATERIALS AND METHODS. Ten full-arch fixed frameworks were manufactured by a CAD/CAM milling system with Co-Cr and Zr (n=5/group). The marginal fit between the abutment and frameworks was measured as stated by single-screw test. Screw-loosening torque evaluated screw stability, and strain analysis was explored on the implant-supported system. All analyses were performed at 3 distinct times: after framework manufacturing; after ceramic application in both materials' frameworks; and after the spark erosion in Co-Cr frameworks. Afterward, stability analysis was re-evaluated after 106 mechanical cycles (2 Hz/150-N) for both materials. Statistical analyses were performed by Kruskal-Wallis and Dunn tests (α=.05). RESULTS. No difference between the two materials was found for marginal fit, screwloosening torque, and strain after framework manufacturing (P>.05). Ceramic application did not affect the variables (P>.05). Spark erosion optimized marginal fit and strain medians for Co-Cr frameworks (P<.05). Screw-loosening torque was significantly reduced by masticatory simulation (P<.05) regardless of the framework materials. CONCLUSION. Co-Cr and Zr frameworks presented similar biomechanical behavior. Ceramic application had no effect on the biomechanical behavior of either material. Spark erosion was an effective technique to improve Co-Cr biomechanical behavior on the implant-supported system. Screw-loosening torque was reduced for both materials after masticatory simulation.

THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION AND PRELOAD OF DIFFERENT CONNECTION TYPES IMPLANT WITH INITIAL CLAMPING (임플랜트의 체결방식에 따른 초기조임력에 의한 응력분포 및 전하중에 관한 연구)

  • Lee Bum-Hyun;Chun Heoung-Jae;Lee Soo-Hong;Han Chong-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.197-206
    • /
    • 2006
  • Statement of problem: One of common problems associated with single teeth dental implant prosthetic is the loosening of screws that retain the implants. Purpose: The maintenance of screw joint stability is considered a function of the preload achieved in the screw when the suggested initial tightening torque is applied. The purpose of this study was to investigate acquired preload after initial clamping torque for estimating screw joint stability. Material and methods: A comparative study on the effect of initial clamping of two types of implant systems with different connections was conducted Three dimensional non-linear finite element analysis is adopted to compare the characteristics of screw preloads and stress distributions between two different types of implant systems composed with abutment, screw, and fixture under the same loading and boundary conditions. Results: 1. When the initial clamping torque of 32Ncm was applied to the implant systems, all types of implants generated the maximum effective stress at the first helix region of screw. 2. Morse taper connection types of implants generate lower stress distributions compared to those by butt joint connection types or implants due to large contact surface between abutment and fixture. 3. The internal types of implant systems with friction grip type implant systems have higher resistance to screw loosening than that of the external types of implant systems since the internal types of implant systems generated larger preload than that generated by the external types for the same tightening moments.

PHOTOELASTIC STRESS ANALYSIS OF LOAD TRANSFER TO SATELLITE ABUTMENT AS AN IMMEDIATE ABUTMENT (인공치아의 즉시부하를 위해 새로이 개발된 인공치아 지대주(Satellite Abutment)의 광탄성 응력 분석)

  • Park, Sang-Kyu;Lee, Baek-Soo;Engelke, W;Kim, Boo-Dong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.6
    • /
    • pp.472-479
    • /
    • 2002
  • Since $Br^{\circ}anemark$ introduced the osseointegrated implants, they have been granted for useful methods for the restoration of oral function. The original $Br^{\circ}anemark$ protocol recommended long stress-free healing periods to achieve the osseointegration of dental implants. However, many clinical and experimental studies have shown that the osseointegration is no wonder in almost cases and that early and immediate loading may lead to predictable osseointegration. So we are willing to introduce the Satellite Abutment newly invented for immediate loading. We think that it will make the occlusal forces dispersed to surrounding bone and that we can restore the oral function immediately after implant installation not disturbing osseointegration. In case of using Satellite abutment, stress concentrated to bone contact area of implant was distributed not only fixation plate and screws but also superior, middle portion of implant and cortical layer of jaw bone. It was clearly decreased on the bone contact surfaces around dental implants. 1. Stress was decreased more than 76.5% when satellite straight abutment was used. 2. Stress was decreased more than 50% when satellite angled abutment was used. 3. The stress around dental implant was well distributed along the cortical bone surface and the fixation plate and screw. This study concludes that satellite abutment can be used as all immediate loading implant prothesis because it was possible to distribute periimplant occlusal stress through implant contact bone surface and cortical layer of jaw bone.

THE EFFECT OF ABUTMENT HEIGHT ON SCREW LOOSENING IN SINGLE IMPLANT-SUPPORTED PROSTHESES AFTER DYNAMIC CYCLIC LOADING

  • Kim Nam-Gun;Kim Yung-Soo;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.6
    • /
    • pp.664-670
    • /
    • 2004
  • Statement of problem. One of the common problems of dental implant prosthesis is the loosening of the screw that connects each component, and this problem is more common in single implant-supported prostheses with external connection. Purpose. The purpose of this study was to examine the changes of detorque values of abutment screws with external connection in different abutment heights. Materials and methods. After cyclic loading on three different abutment heights, detorque values were measured. Abutments were retained with titanium abutment screws tightened to 30 Ncm (30.5 kgmm) with digital torque gauge as recommended by the manufacturer. Replacing abutments, implants and titanium abutment screws with new ones at every measurement, initial detorque values were measured six times. In measuring de torque values after cyclic loading, Avana Cemented Abutments of 4.0 mm collar, 7.0 mm height (Osstem Co., Ltd., Seoul, Korea) were used with three different lengths of 5.0, 8.0, 11.0 mm. Shorter abutments were made by milling of 11.0 mm abutment to have the same force-exercised area of 4.5 mm diameter. Sine curve force (20N-320N, 14Hz) was applied, and detorque values were measured after cyclic loading of 2 million times by loading machine. Detorque values of initial and after-loading were measured by digital torque gauge. One-way ANOVA was employed to see if there was any influence from different abutment heights. Results. The results were as follows: 1. The initial detorque value was 27.8$\pm$0.93 kgmm, and the ratio of the initial detorque value to the tightening torque was 0.91(27.8/30.5). 2. Measured detorque values after cyclic loading were declined as the height of the abutment increased, that was, 5.0 mm; 22.3$\pm$0.82 kgmm, 8.0 mm; 21.8$\pm$0.93 kgmm, and 11.0 mm; 21.3$\pm$0.94 kgmm. 3. One-way ANOVA showed no statistically significant differences among these (p>0.05). 4. Noticeable mobility at the implant-abutment interface was not observed in any case after cyclic loading at all.