• Title/Summary/Keyword: Dental implant, Abutment screw

Search Result 167, Processing Time 0.024 seconds

How can improve the insufficient success rate at immediate loading? (임상가를 위한 특집 1 - Immediate loading 부족한 성공률 5% 채우기)

  • Jun, Sang-Ho;Ahn, Jin-Soo;Ryu, Jae-Jun;Kwon, Jong-Jin
    • The Journal of the Korean dental association
    • /
    • v.51 no.4
    • /
    • pp.190-197
    • /
    • 2013
  • A titanium based screw shaped dental implant was first introduced by Branemark and a treatment protocol where the restoration of edentulous area by connecting abutment after the osseointegration of the titanium surface of the implant and surrounding bone structure has been proposed. Although this protocol is widely accepted as a standard up to date, the healing duration of 3-6 months as well as the need for provisional prostheses during this period present as a major drawback. Immediate loading has been accomplished through the advent of various implant designs, enforced surface treatments, diverse forms of abutment, and delicate surgical techniques together with the increase in demand from the patients. The success rate of the immediate loading technique has been first reported as 85.7% by Dr. Schnitman in 1990 which recently has been reported up to 100% in the case of immediate loading in single tooth by Dr. Kan. To ameliorate the success rate of immediate loading technique, selection of patients presenting a sound bone quality and quantity, acquiring primary stability through delicate surgical techniques and fabrication of prostheses which accounts for biological stabilities should all be taken into consideration. This presentation introduces the understanding of biological stability of immediate loading, various methods for measurement of stability and clinical cases regarding immediate loading technique.

Factors associated with the survival and marginal bone loss of dental implants: a 5-year retrospective study (임플란트의 생존과 변연골 소실에 영향을 미치는 인자들)

  • Song, Eul-Rak;Lee, Jae-Kwan;Um, Heung-Sik;Park, Se-Hwan;Chang, Beom-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.4
    • /
    • pp.280-292
    • /
    • 2016
  • Purpose: The purpose of this study was to compare the long-term survival rate and peri-implant marginal bone loss related to multiple risk factors including the clinician's experience. Materials and Methods: Four hundred twenty implants in 146 patients, who had involved a supportive periodontal therapy program every 3 to 6 months and had follow up data for at least 5 years, were selected as the study group. Peri-implant marginal bone loss, data of demographic, implant and surgical characteristics were collected from peri-apical radiographs and chart review. Implant survival was regarded as the remaining with radiographic marginal bone level in excess of 50% of the fixture length for any reason. Results: The cumulative survival rate after 5 years of loading was 94.9%. In binary logistic regression analysis, smoking status (P = 0.033) and presence of spontaneous cover screw exposure (P < 0.001) were significantly related to 5-year survival of implants. In stepwise multiple regression analysis, smoking status (P < 0.001), type of abutment connection (P < 0.001) and implant surface (P = 0.033) were significantly related to peri-implant marginal bone level. And the year of resident was not statistically related to 5-year implant survival in simple logistic regression analysis (P = 0.171). Conclusion: Smoking status, spontaneous cover screw exposure, type of abutment connection and implant surface might influence the implant success. There was no significant correlation between the year of resident and implant failure.

Evaluation of reverse torque value of abutment screws on CAD/CAM custom-made implant abutments (CAD/CAM을 이용한 맞춤형 임플란트 지대주의 나사 풀림 토크 평가)

  • Lee, Chang-Jae;Yang, Sung-Eun;Kim, Seok-Gyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.2
    • /
    • pp.128-134
    • /
    • 2012
  • Purpose: The purpose of this study was to compare the screw joint stability between the CADCAM custom-made implant abutment and the prefabricated implant abutment by measuring the reverse torque value after cyclic loading. Materials and methods: Twelve screw type implants (Implantium, Dentium Co., Seoul, Korea) were embedded in aluminum cylinder with acrylic resin. The implant specimens were equally divided into 3 groups, and connected to the prefabricated titanium abutments (Implantium, Dentium Co., Seoul, Korea), CADCAM custom-made titanium abutments (Myplant, Raphabio Co., Seoul, Korea) and CADCAM custom-made zirconia abutments (Zirconia Myplant, Raphabio Co., Seoul, Korea). The CAD-CAM milled titanium crown (Raphabio Co., Seoul, Korea) was cemented on each implant abutment by resin cement. Before cyclic loading, each abutment screw was tightened to 30 Ncm and the reverse torque value was measured about 30 minutes later. After the crown specimen was subjected to the sinusoidal cyclic loading (30 to 120 N, 500,000 cycles, 2 Hz), postloading reverse torque value was measured and the reverse torque loss ratio was calculated. Kruskal-Wallis test was used for statistical analysis of the reverse torque loss ratio. Results: The CADCAM custom-made titanium abutments presented higher values in reverse torque loss ratio without statistically significant differences than the prefabricated titanium abutments ($P$>.05). Reverse torque loss ratio of the custom-made zirconia abutments was significantly higher compared to that of the prefabricated titanium abutments ($P$=.014). Conclusion: Within the limitation of the present $in-vitro$ study, it was concluded that there was no significant difference in screw joint stability between the CADCAM custom-made titanium abutments and the prefabricated titanium abutments. On the other hand, the CADCAM custom-made zirconia abutments showed lower screw joint stability than prefabricated titanium abutments.

Burnishing effect on marginal misfit of implant-supported screw-and-cement retained prostheses: A case report (임플란트 지지 나사-시멘트 유지형 보철물에서 보철물-지대주 제거 후 변연부 연마의 효과: 증례보고)

  • Kim, Mijoo;Lee, Du-Hyeong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.3
    • /
    • pp.239-243
    • /
    • 2020
  • When the marginal fit of fixed dental prosthesis decreases, biological and technical complications, such as plaque accumulation, periodontal disease, hypersensitivity, components fracture, cement loss, can happen. The complications affect the long-term success and survival of prostheses. This case report describes a clinical procedure to minimize the marginal gap of implant-supported screw-and-cement retained prosthesis by removing prosthesis-abutment complex and burnishing the interface area. The marginal gap was measured before and after the burnishing using a stereomicroscope and compared. This technique improves the marginal fit, thereby contributing the longevity of the prosthesis.

A FINITE ELEMENT STRESS ANALYSIS OF THE STRESS DISTRIBUTION AND THE SHOCK ABSORPTION IN AN OSSEOINTEGRATED IMPLANT-NATURAL TOOTH SUPPORTED FIXED PARTIAL DENTURE (골유착성 임프란트와 자연치를 이용한 고정성 국소의치에서 응력분산 및 충격흡수에 관한 유한요소법적 응력분석)

  • Jeong Chang-Mo;Lee Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.4
    • /
    • pp.582-610
    • /
    • 1992
  • The long-term success of any dental implant is dependent upon the optimization of stresses which occur during oral function and parafunction. Especially, it has been suggested that there is an unique set of problems associated with joining an osseointegrated implant and a natural tooth with a fixed partial denture. For this particular case, although many literatures suggest different ways to avoid high stress concentrations on the bone surrounding the implant under static and dynamic loading conditions, but few studies on the biomechanical efficacy of each assertion have been reported. The purpose of this investigation was to evaluate the efficacies of clinically suggested methods on stress distribution under static load and shock absorption under dynamic load, using two dimensional finite element method. In FEM models of osseointegrated implant-natural tooth supported fixed partial dentures, calculations were made on the stresses in surrounding bone and on the deflections of abutments and superstructure, first, to compare the difference in stress distribution effects under static load by the flexure of fastening screw or prosthesis, or intramobile connector, and second, to compare the difference in the shock absorption effects under dynamic load by intramobile connector or occlusal veneering with composite resin. The results of this analysis suggest that : 1. Under static load condition, using an implant design with fastenign screw connecting implant abutment and prosthesis or increasing the flexibility of fastening screw, or increasing the flexibility of prosthesis led to the .increase in height of peak stresses in cortical bone surrounding the implant, and has little effect on stress change in bone around the natural tooth. 2. Under static load condition, intramobile connector caused the substantial decrease in stress concentration in cortical bone surrounding the implant and the slight increase in stress in bone around the natural tooth. 3. Under dynamic load condition, both intramobile connector and composite resin veneering showed shock absorption effect on bone surrounding the implant and composite resin veneering had a greater shock absorption effect than intramobile connector.

  • PDF

Influence of bearing surface angle of abutment screw on mechanical stability of joint in the conical seal design implant system (내부 원추형 연결형태 임플란트에서 지대주 나사머리의 좌면각도가 연결부 기계적 안정성에 미치는 영향)

  • Kim, Joo-Hyeun;Huh, Jung-Bo;Yun, Mi-Jung;Kang, Eun-Sook;Heo, Jae-Chan;Jeong, Chang-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.3
    • /
    • pp.206-214
    • /
    • 2014
  • This study is to evaluate how different bearing surface angles of abutment screw affect the mechanical stability of the joint in the conical seal design implant system. Materials and Methods: Internal connection type regular implants, two-piece cemented type abutments and tungsten carbide/carbon-coated titanium alloy abutment screws were selected. Titanium alloy screws with conical ($45^{\circ}$) and flat ($90^{\circ}$) head designs which fit on to abutment were fabricated. The abutments were tightened to implants with 30 Ncm by digital torque gauge. The loading was applied once to the central axis of abutment. The mean axial displacement was measured using micrometer before and after the tightening and loading (n = 5). The abutment was tightened to implants with 30 Ncm and T-shape stainless steel crown was cemented. Then the change in the amount of reverse-torque was measured after the repeated loading to the central axis, and the place 5 mm away from the central axis. Compressive bending and fatigue strength were measured at the place 5 mm away from the central axis (n = 5). Results: Both groups showed the largest axial displacement when abutment screw tightening and total displacement was greater in the flat head group compared to conical head group (P < 0.05). However, there were no significant differences in reverse torque value, compressive bending and fatigue strength (P > 0.05). Conclusion: Within the limitations of this study, the abutment screw head design had no effect on two groups regarding the joint stability, however the conical head design affected the settlement of abutment resulting in the reduced total displacement.

Submucosal zirconia implant prosthesis fabricated with CAD/CAM (CAD/CAM으로 제작한 점막하 지르코니아 임플란트 보철 수복 증례)

  • Chang, Jae-Seung;Kim, Sunjai
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.4
    • /
    • pp.352-358
    • /
    • 2014
  • They have been recently introduced many aesthetic implant prosthesis using with zirconia and CAD/CAM. However, there are many limitations in their gingival and occlusal region. In this case, submucosal zirconia implant prosthesis were fabricated with CAD/CAM system. The connection of these screw cement retained prosthesis and titanium abutment was designed to 1mm above the fixture. The clinical results were satisfactory on the aesthetics and function.

Novel design of implant prosthesis considering esthetics and periodontal maintenance: case report (심미성 및 치주 조직의 유지 관리를 고려한 임플란트 보철 증례)

  • Paek, Janghyun
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.23 no.2
    • /
    • pp.70-76
    • /
    • 2014
  • After extraction of tooth, alveolar ridge resorption is inevitable in most cases. Clinicians confront with horizontal and vertical resorption of alveolar bone. Without massive amount of bone and soft tissue graft, dental implant will be placed apically to gain stability. In those cases, not only white esthetic part, but also pink esthetic part should be restored with pink porcelain. The margin of prosthesis should be located apically to reproduce natural look with adjacent teeth. However, when the margin is located apically, it is always hard to remove remaining cement, thus complications may arise. In this report, a novel design of implant prosthesis is introduced to solve those issues. The novel design is consisted of zirconia framework with pink porcelain and separate crowns on top of the framework. It eliminates the possibility of cement remnants by bringing the crown margin coronally. Pink esthetic part is incorporated in abutment part instead of crown part and the screw hole is covered with separate crowns.

Comparative finite element analysis of mandibular posterior single zirconia and titanium implants: a 3-dimensional finite element analysis

  • Choi, Sung-Min;Choi, Hyunsuk;Lee, Du-Hyeong;Hong, Min-Ho
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.6
    • /
    • pp.396-407
    • /
    • 2021
  • PURPOSE. Zirconia has exceptional biocompatibility and good mechanical properties in clinical situations. However, finite element analysis (FEA) studies on the biomechanical stability of two-piece zirconia implant systems are limited. Therefore, the aim of this study was to compare the biomechanical properties of the two-piece zirconia and titanium implants using FEA. MATERIALS AND METHODS. Two groups of finite element (FE) models, the zirconia (Zircon) and titanium (Titan) models, were generated for the exam. Oblique (175 N) and vertical (175 N) loads were applied to the FE model generated for FEA simulation, and the stress levels and distributions were investigated. RESULTS. In oblique loading, von Mises stress values were the highest in the abutment of the Zircon model. The von Mises stress values of the Titan model for the abutment screw and implant fixture were slightly higher than those of the Zircon model. Minimum principal stress in the cortical bone was higher in the Titan model than Zircon model under oblique and vertical loading. Under both vertical and oblique loads, stress concentrations in the implant components and bone occurred in the same area. Because the material itself has high stiffness and elastic modulus, the Zircon model exhibited a higher von Mises stress value in the abutments than the Titan model, but at a level lower than the fracture strength of the material. CONCLUSION. Owing to the good esthetics and stress controllability of the Zircon model, it can be considered for clinical use.

The Study on the Physical Property of Provisional Prosthesis using Modified Temporary Abutment (변형된 임플란트 임시 지대주의 물성에 대한 연구)

  • Yang, Byung-Duk;Yoon, Tae-Ho;Choi, Un-Jae;Park, Ju-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.4
    • /
    • pp.329-340
    • /
    • 2006
  • Statement of problem: Damping of the peak force transmitted to implants has been reported by in vitro studies using impact forces on resin-veneered superstructures. Theoretical assumptions suggest that use of acrylic resin for the occlusal surfaces of a prosthesis would protect the connection between implant and bone. Therefore, the relationship between prosthesis materials and the force transmitted through the implant system also needs to be investigated under conditions that resemble the intraoral mechanical environment. Purpose: The purpose of this study was to analyze the fracture strength and modes of temporary prosthesis when a flange or occlusally extended structure were connected on the top of the abutment. Material and method: Modified abutments of winged and bulk design were made by casting the desired wax pattern which is made on the UCLA type plastic cylinder. Temporary crowns were made using templates on the modified abutments, and its fracture toughness and strain were compared to the traditional temporary prosthesis. To evaluate the effect of aging, 5.000 times of thermocycling were performed, and their result was compared to the 24hours specimen result. Results: The following conclusions were drawn from this study: 1. In the fracture toughness test, temporary crown's fracture line located next to the screw hole while modified designs with metal support showed fracture line on the metal and its propagation along the metal-resin interface. 2. Wing and bulk structure didn't show significant difference in the fracture toughness (p>0.05), but wing structure showed stress concentration on the screw hole area compared to bulk structure which showed even stress distribution. 3. In the fracture toughness test after thermocycling, wing and bulk structure showed increased or similar results in metal supported area while off-metal area and temporary crown showed decreased results. 4. In the strain measurement after thermocycling, its value increased in the temporary and bulk structure. However, wing structure showed decreased value in the loading point while increased value in the screw hole area. Conclusion: Wing type design showed compatible result to the bulk type that its application with composite resin prosthesis to the implant dentistry is considered promising.