• Title/Summary/Keyword: Dental cement

Search Result 422, Processing Time 0.019 seconds

Influence of abutment height and convergence angle on the retrievability of cement-retained implant prostheses with a lingual slot

  • Choi, Kyu-Hyung;Son, KeunBaDa;Lee, Du-Hyeong;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.381-387
    • /
    • 2018
  • PURPOSE. Cement-retained implant prostheses can lack proper retrievability during repair, and residual cement can cause peri-implantitis. The purpose of this in vitro study was to evaluate the influence of abutment height and convergence angle on the retrievability of cement-retained implant prostheses with lingual slots, known as retrievable cement-type slots (RCS). MATERIALS AND METHODS. We fabricated six types of titanium abutments (10 of each type) with two different heights (4 mm and 6 mm), three different convergence angles ($8^{\circ}$, $10^{\circ}$, and $12^{\circ}$), a sloped shoulder margin (0.6 mm depth), a rectangular shape ($6mm{\times}6.5mm$) with rounded edges, and a rectangular ledge ($2mm{\times}1mm$) for the RCS. One monolithic zirconia crown was fabricated for each abutment using a dental computer-aided design/computer-aided manufacturing system. The abutments and crowns were permanently cemented together with dual-curing resin cement, followed by 24 hours in demineralized water at room temperature. Using a custom-made device with a slot driver and torque gauge, we recorded the torque ($N{\cdot}cm$) required to remove the crowns. Statistical analysis was conducted using multiple regression analysis and Mann-Whitney U tests (${\alpha}=.05$). RESULTS. Removal torques significantly decreased as convergence angles increased. Multiple regression analysis showed no significant interaction between the abutment height and the convergence angle (Durbin-Watson ratio: 2.186). CONCLUSION. Within the limitations of this in vitro study, we suggest that the retrievability of cement-retained implant prostheses with RCS can be maintained by adjusting the abutment height and convergence angle, even when they are permanently cemented together.

INFLUENCE OF THE EVAPORATOIN OF LIQUIDS OF DENTAL CEMENTS ON THE PROPERTIES OF HARDENED CEMENTS (치과용 시멘트 용액의 증발이 경화된 시멘트의 성질에 미치는 영향)

  • Kim, Hyang-Kyung;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.156-169
    • /
    • 1997
  • This study was designed to evaluate the influences of evaporation of liquid of dental cements by drying during long term using. Zinc phosphate cement, polycarboxylate cement, and glass ionomer cement were used, and evaluated the properties as follows; consistency, setting time, film thickness, solubility, and compressive strength according to the ADA specification. The specimens of control group were made by mixing the newly opened liquid using the powder-liquid ratio recommended by the manufacturer, and the specimens of ES groups were made by mixing the 10% evaporated liquid by drying with the powder-liquid ratio recommeded by the manufacturer, and the specimens of EM group were made by mixing the 10% evaporated liquid with the powder-liquid ratio modified for standard consistency. The following conclusions were drawn ; 1. The viscosity of mixture of all kinds of cements were increased by the evaporation of liquid, especially the viscosity of glass ionomer cement were influenced significantly. 2. The amount of liquid should be increased to get a standard consistency at the using of evaporated liquid of cement, the most significant increase of liquid amount was required on Ketac-Cem. 3. The setting times were increased at both cases of mixing of evaporated liquid with powder - liquid ratio recommended by manufacturer or modifided through consistency test. 4. At an experimental group of mixing of the evaporated liquid with powder-liquid ratio recommended by manufacturer, solubility was decreased and film thickness was increased. 5. By the result of evaporation of cement liquid, the compressive strength of polycarboxylate cement was increased slightly and it of glass ionomer cement was increased, however, by the increase of amount of liquid to be possible to manipulate the compressive strength were decreased.

  • PDF

FINITE ELEMENT ANALYSIS OF STRESS AND TEMPERATURE DISTRIBUTION AFFECTED BY VARIOUS RESTORATIVE AND BASE MATERIAL (수복재와 이장재에 따른 응력과 온도 분포의 유한 요소 분석)

  • Lee, Jae-young;Oh, Tae-Suk;Lim, Sung-Sam
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.321-337
    • /
    • 2000
  • Dental caries, one of the most frequent dental disease, become larger because it can be thought as a simple disease. Further more, it can progress to unexpected root canal therapy with fabrication of crown that needs reduction of tooth structure. Base is required in a large caries and ZOE, ZPC, glass ionomer are used frequently as base material. They, with restorative material, can affect the longevity of the restoration. In this study, we assume that the mandibular 1st molar has deep class I cavity. So, installing the 3 base material, 3 kinds of fillings were restored over the base as follows; 1) amalgam only, 2) amalgam with ZPC, 3) amalgam with ZOE, 4) amalgam with GI cement, 5) gold inlay with ZPC, 6) gold inlay with GI cement, 7) composite resin only, 8) composite resin with GI cement. After develop the 3-dimensional model for finite element analysis, we observe the distribution of stress and temperature with force of 500N to apical direction at 3 point on occlusal surface and temperature of 55 degree, 15 degree on entire surface. The analyzed results were as follow : 1. Principal stress produced at the interface of base, dentin, cavity wall was smallest in case of using GI cement as base material under the amalgam. 2. Principal stress produced at the interface of base, dentin, cavity wall was smaller in case of using GI cement as a base material than ZPC under gold inlay. 3. Composite resin-filled tooth showed stress distributed over entire tooth structure. In other words, there was little concentration of stress. 4. ZOE was the most effective base material against hot stimuli under the amalgam and GI cement was the next. In case of gold inlay, GI cement was more effective than ZPC. 5. Composite resin has the small coefficient of thermal conductivity. So, composite resin filling is the most effective insulating material.

  • PDF

AN EXPERIMENTAL STUDY ON THE MEASUREMENT OF MARGINAL LEAKAGE USING A RADIOACTIVITY (충전후 방사능에 의한 변연누출 측정에 관한 실험적 연구)

  • Kim, Mi-Ja;Lee, Myung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.13 no.1
    • /
    • pp.69-78
    • /
    • 1988
  • The study was designed to establish a more nearly quantitative method for assessing the marginal leakage of dental restorations. 27 Class V cavities with $45^{\circ}$ bevel joint were prepared and classified into 2 groups. One group was filled with Scotchbond and silux. The other group was filled with glass ionomer cement, Scotchbond and silux. After finishing, all specimens were subjected manually to 100 thermal cycles at $0^{\circ}C$ and $100^{\circ}C$ water-bath. They were soaked in a samarium nitrate solution for 3 hours, irradiated with flux of $6{\times}10^{12}$ neutrons/$cm^2$/sec for 11 hours, cooled for 200 hours, counted with the HPGE detector and the tracer uptake was determined by comparison with a standard of samarium (10 ${\mu}g$). The following results were obtained. 1. Both of the two groups showed a considerable amounts of marginal leakage. 2. The group filled without glass ionomer cement base showed more marginal leakage than the group filled with glass ionomer cement base. 3. Neutron Activation Analysis produced a good quantitative method to measure the marginal leakage and samarium was appropriate to measure the marginal leakage of resin restorations using neutron activation analysis.

  • PDF

Preparation and Characterization of Antibacterial Dental Resin Cement Material

  • Kim, Duck-Hyun;Jung, Hwi-Su;Kim, Sun-Hun;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.2
    • /
    • pp.93-98
    • /
    • 2018
  • Bis-GMA, TEGDMA, and camphorquinone were used as the main material, cross-linking agent, and photoinitiator, respectively. In addition, 2-isocyanatoethyl methacrylate was used as an additive for high strength, while the 3-hydroxypyridine was used as an additive for antibacterial activity. Photopolymerization was also carried out at a 440-480 nm wavelength and at about $1000mW/cm^2$ intensity for about 40 seconds. The breaking strength measurement of the samples showed that the breaking strength increased along with increasing the addition ratio of IEM, while it took less time until the polymerization was complete, thereby suggesting that the degree of polymerization has the tendency to increase. And also, compared to the size of the clear zone formed by ampicillin, the 3-hydroxypyridine group exhibited antimicrobial activity induced by ampicillin. The results of this study suggest that the use of 2-isocyanatoethyl methacrylate as an additive for high strength and 3-hydroxypyridine as an additive for improved antibacterial activity would improve the usability of the fabricated polymer as a dental resin cement material with high functionality.

Three Dimensional Finite Element Analysis on ITI Implant Supported Fixed Partial Dentures with Various Fitting Accuracy (적합도에 따른 ITI 임플란트 지지 고정성 국소의치의 삼차원 유한요소 분석)

  • Choi, Min-Ho;Lee, Il-Kwon;Kim, Yu-Ree;Cho, Hye-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.1
    • /
    • pp.75-87
    • /
    • 2006
  • The purpose of this study was to investigate the effects of prostheses misfit, cantilever on the stress distribution in the implant components and surrounding bone using three dimensional finite element analysis. Two standard 3-dimensional finite element models were constructed: (1) 3 ITI implant supported, 3-unit fixed partial denture and (2) 3 ITI implant supported, 3-unit fixed partial denture with a distal cantilever. variations of the standard finite element models were made by placing a $100{\mu}m$ or $200{\mu}m$ gap between the fixture, the abutment and the crown on the second premolar and first molar. Total 14 models were constructed. In each model, 244 N of vertical load and 244 N of $30^{\circ}$ oblique load were placed on the distal marginal ridge of the distal molar. von Mises stresses were recorded and compared in the crowns, abutments, crestal compact bones, and trabecular bones. The results were obtained as follows: 1. In the ITI implant system, cement-retained prostheses showed comparatively low stress distributions on all the implant components and fixtures regardless of the misfit sizes under vertical loading. The stresses were increased twice under oblique loading especially in the prostheses with cantilever, but neither showed the effects of misfit size. 2. Under the oblique loading and posterior cantilever, the stresses were highly increased in the crestal bones around ITI implants, but effects of misfit were not shown. Although higher stresses were shown on the apical portion of trabecular bones, the effects by misfit were little and the stresses were increased by the posterior cantilever. 3. When the cement loss happened in the ITI implant supported FPD with misfit, the stresses were increased in the implant componets and supporting structures.

Screw and cement retained implant prosthesis rehabilitation of mandibular edentulous patients with severely absorbed ridge (치조제가 심하게 흡수된 하악 무치악환자의 나사-시멘트 유지형 임플란트 보철 수복증례)

  • Im, Joong-Jae
    • Journal of Technologic Dentistry
    • /
    • v.41 no.2
    • /
    • pp.149-156
    • /
    • 2019
  • Purpose: Prosthodontics for edentulous patients is a treatment technique using implant, which has impactful results in retention and support effects. Methods: As a retention technique, SCRP (screw and cement retained implant prosthesis) has reported in many studies as a beneficial method for both patients and curers, which can reduce errors in process of making abutment and top implant. Results: Prosthesis manufacturing, as polymerization method of hardened resin teeth with thermoplastic resin, is helpful for patients with aesthetic and financial situations regarding residual ridge and interocclusal relationship, also indicates reliable results in both retention and care. Conclusion: Using SCRP technique, we notably obtained a clinical and aesthetic outcome from five implants in anterior tooth, which are half fixable and detachable implants on screw of implant abutment by the technicians at anytime.

Microtensile bond strength of resin cement primer containing nanoparticles of silver (NAg) and amorphous calcium phosphate (NACP) to human dentin

  • Arjmand, Nushin;Boruziniat, Alireza;Zakeri, Majid;Mohammadipour, Hamideh Sadat
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.177-183
    • /
    • 2018
  • PURPOSE. The purpose of the current study was to evaluate the effect of incorporating nanoparticles of silver (NAg) and amorphous calcium phosphate (NACP) into a self-etching primer of a resin cement on the microtensile bond strength of dentin, regarding the proven antibacterial feature of NAg and remineralizing effect of NACP. MATERIALS AND METHODS. Flat, mid-coronal dentin from 20 intact extracted human third molars were prepared for cementation using Panavia F2.0 cement. The teeth were randomly divided into the four test groups (n=5) according to the experimental cement primer composition: cement primer without change (control group), primer with 1% (wt) of NACP, primer with 1% (wt) of physical mixture of NACP+Nag, and primer with 1% (wt) of chemical mixture of NACP+Nag. The resin cement was used according to the manufacturer's instructions. After storage in distilled water at $37^{\circ}C$ for 24 h, the bonded samples were sectioned longitudinally to produce $1.0{\times}1.0mm$ beams for micro-tensile bond strength testing in a universal testing machine. Failure modes at the dentin-resin interface were observed using a stereomicroscope. The data were analyzed by one-way ANOVA and Tukey's post-hoc tests and the level of significance was set at 0.05. RESULTS. The lowest mean microtensile bond strength was obtained for the NACP group. Tukey's test showed that the bond strength of the control group was significantly higher than those of the other experimental groups, except for group 4 (chemical mixture of NACP and NAg; P=.67). CONCLUSION. Novel chemical incorporation of NAg-NACP into the self-etching primer of resin cement does not compromise the dentin bond strength.

Characterization and antimicrobial efficacy of Portland cement impregnated with silver nanoparticles

  • Nam, Ki Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.3
    • /
    • pp.217-223
    • /
    • 2017
  • PURPOSE. This study investigated the effects of silver nanoparticle (SN) loading into hydraulic calcium silicate-based Portland cement on its mechanical, antibacterial behavior and biocompatibility as a novel dental bone substitute. MATERIALS AND METHODS. Chemically reduced colloidal SN were combined with Portland cement (PC) by the concentrations of 0 (control), 1.0, 3.0, and 5.0 wt%. The physico-mechanical properties of silver-Portland cement nanocomposites (SPNC) were investigated through X-ray diffraction (XRD), setting time, compressive strength, solubility, and silver ion elution. Antimicrobial properties of SPNC were tested by agar diffusion against Streptococcus mutans and Streptococcus sobrinus. Cytotoxic evaluation for human gingival fibroblast (HGF) was performed by MTS assay. RESULTS. XRD certified that SN was successfully impregnated in PC. SPNC at above 3.0 wt% significantly reduced both initial and final setting times compared to control PC. No statistical differences of the compressive strength values were detected after SN loadings, and solubility rates of SPNC were below 3.0%, which are acceptable by ADA guidelines. Ag ion elutions from SPNC were confirmed with dose-dependence on the concentrations of SN added. SPNC of 5.0 wt% inhibited the growth of Streptococci, whereas no antimicrobial activity was shown in control PC. SPNC revealed no cytotoxic effects to HGF following ISO 10993 (cell viability > 70%). CONCLUSION. Addition of SN promoted the antibacterial activity and favored the bio-mechanical properties of PC; thus, SPNC could be a candidate for the futuristic dental biomaterial. For clinical warrant, further studies including the inhibitory mechanism, in vivo and long-term researches are still required.

AN INFRA-RED SPECTROPHOTOMETRIC STUDY OF THE REACTION IN CALCIUM HYDROXIDE DENTAL CEMENT (치과용(齒科用) 수산화(水酸化)칼슘 시멘트의 경화반응(硬化反應)에 관(關)한 적외선분석학적(赤外線分析學的) 연구(硏究))

  • Kim, Choong-Jong;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.10 no.1
    • /
    • pp.71-83
    • /
    • 1984
  • The purpose of this study was to evaluate the transmission spectrum of the set calcium hydroxide dental cement (Dycal, L.D. Caulk Co. Milford, Del.) Cement was prepared for A T R spectra at a low powder-to-liquid ratio of 3.0gm/ml in order to retard the reaction and facilitate the manipulation of loading the cement into the cell. Spectra were recorded on an I R Spectrophotometer (MX-1, FT) at an agle of incidence of 55. The A T R cell was a RIIc Model TR5 with a hemisperical KRS-5 (Thallium-Bromide-Iodide). A spectrum was recorded within 3 minutes. Further spectra were recorded after 5,10,30 minutes and 1,5,24, 72 hours. The results were as follows; 1. The setting reaction between acid paste and base past would take place fastly within 10 minutes after mix, and that would be slow until 72 hours after mix. 2. In the set cements, some methyl salicylate and calcium hydroxide remained unreacted until 72 hours after mix. 3. The setting reaction and the reaction rate occuring at the surface and in the bulk cements were similar. 4. The chelates were bound together between calcium hydroxide and methyl salicylate.

  • PDF