• Title/Summary/Keyword: Dental biofilm

Search Result 117, Processing Time 0.022 seconds

Establishment of a Dental Unit Biofilm Model Using Well-Plate (Well-Plate를 사용한 치과용 유니트 수관 바이오필름 모델 확립)

  • Yoon, Hye Young;Lee, Si Young
    • Journal of dental hygiene science
    • /
    • v.17 no.4
    • /
    • pp.283-289
    • /
    • 2017
  • The water discharged from dental unit waterlines (DUWLs) is heavily contaminated with bacteria. The development of efficient disinfectants is required to maintain good quality DUWL water. The purpose of this study was to establish a DUWL biofilm model using well-plates to confirm the effectiveness of disinfectants in the laboratory. Bacteria were obtained from the water discharged from DUWLs and incubated in R2A liquid medium for 10 days. The bacterial solution cultured for 10 days was made into stock and these stocks were incubated in R2A broth and batch mode for 5 days. Batch-cultured bacterial culture solution and polyurethane tubing sections were incubated in 12-well plates for 4 days. Biofilm accumulation was confirmed through plating on R2A solid medium. In addition, the thickness of the biofilm and the shape and distribution of the constituent bacteria were confirmed using confocal laser microscopy and scanning electron microscopy. The average accumulation of the cultured biofilm over 4 days amounted to $1.15{\times}10^7CFU/cm^2$. The biofilm was widely distributed on the inner surface of the polyurethane tubing and consisted of cocci, short-length rods and medium-length rods. The biofilm thickness ranged from $2{\mu}m$ to $7{\mu}m$. The DUWL biofilm model produced in this study can be used to develop disinfectants and study DUWL biofilm-forming bacteria.

Neutral Electrolyzed Water for Prevention of Dental Caries (기존 구강청결제를 대체할 수 있는 치아우식 예방을 위한 전기분해수)

  • Lee, Kyam
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.43 no.3
    • /
    • pp.306-312
    • /
    • 2016
  • Gargle solution has typically been used for the prevention of oral infectious disease such as dental caries and periodontitis. However, the use of most gargle solutions is controversial in application for children because some gargle solutions have harmful side effects. Electrolyzed water is generated by passed an electric current and has antimicrobial activity. The purpose of this study was to investigate and compare the efficacy of electrolyzed water in various conditions for eliminating cariogenic bacteria. Electrolyzed water was generated by a platinum electrode in the presence of sodium chloride at various concentrations. Streptococcus mutans and Streptococcus sobrinus were cultivated into a brain heart infusion broth. After harvesting planktonic bacteria, the pellets were treated with the electrolyzed water and commercial gargle solutions and plated on a mitis-salivarius agar plate. Also, the anti-biofilm activity of the electrolyzed water and commercial gargle solutions was investigated after biofilm formation of S. mutans and S. sobrinus. The bacteria in the biofilm were plated onto a mitis-salivarius agar plate. The plates were incubated, and the colony forming unit was measured. The electrolyzed water containing sodium chloride showed significant antibacterial activity against S. mutans and S. sobrinus as well as some gargle solutions. Furthermore, the electrolyzed water had more disruptive effect on the biofilm of S. mutans and S. sobrinus and killed more bacteria in the biofilm than commercial gargle solutions. The results demonstrate that electrolyzed water may be a useful gargle solution for prevention of dental caries.

THE EFFECT OF FERMENTED MILK ON VIABLE CELL COUNT AND BIOFILM FORMATION OF STREPTOCOCCUS MUTANS (유산균 발효유가 Streptococcus mutans의 생균수 및 biofilm 형성에 미치는 영향)

  • Shin, Hye-Sung;Kim, Seon-Mi;Choi, Nam-Ki;Yang, Kyu-Ho;Kang, Mi-Sun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.3
    • /
    • pp.358-366
    • /
    • 2009
  • Lactic acid bacteria worked positively on gastrointestinal tract and oral environment. So I selected commercial five fermented milks and milk, and then I evaluated their effect of growth inhibition and biofilm formation of cariogenic bacteria, Streptococcus mutans. And also calculated the acidity, buffering capacity, concentration of Ca and P ion and pH change of those drinks. After adding S. mutans to fermented milks viable cell count of S. mutans in milk was not statistically different but those in all fermented milks were decreased as concentration of fermented milk increased. When I measured the amount of formed biofilm in 10% fermented milks and milk with S. mutans and compared with those without S. mutans, the amount was decreased in Active GG and Bulgaris while being increased in Tootee, Ace and milk(P<0.05). The fermented milk with the lowest pH value was E5(3.48${\pm}$0.01), and the highest was Bulgaris(4.19${\pm}$0.02). pH change of the fermented milks and milk with S. mutans was measured. The highest acid producing fermented milk was Bulgaris, and followed by Active GG, Ace, Tootee, E5, Milk. These results indicated that fermented milks had caries activity due to the value of initial acidity and acid producing capacity. But, concentrated fermented milks had the inhibitory effect against S. mutans, and also had high volume of Ca and P ion that protected teeth. So I suggest that they have positive effect on teeth.

  • PDF

Phototoxic effect of blue light on the planktonic and biofilm state of anaerobic periodontal pathogens

  • Song, Hyun-Hwa;Lee, Jae-Kwan;Um, Heung-Sik;Chang, Beom-Seok;Lee, Si-Young;Lee, Min-Ku
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.2
    • /
    • pp.72-78
    • /
    • 2013
  • Purpose: The purpose of this study was to compare the phototoxic effects of blue light exposure on periodontal pathogens in both planktonic and biofilm cultures. Methods: Strains of Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, and Porphyromonas gingivalis, in planktonic or biofilm states, were exposed to visible light at wavelengths of 400.520 nm. A quartz-tungsten-halogen lamp at a power density of $500mW/cm^2$ was used for the light source. Each sample was exposed to 15, 30, 60, 90, or 120 seconds of each bacterial strain in the planktonic or biofilm state. Confocal scanning laser microscopy (CSLM) was used to observe the distribution of live/dead bacterial cells in biofilms. After light exposure, the bacterial killing rates were calculated from colony forming unit (CFU) counts. Results: CLSM images that were obtained from biofilms showed a mixture of dead and live bacterial cells extending to a depth of $30-45{\mu}m$. Obvious differences in the live-to-dead bacterial cell ratio were found in P. gingivalis biofilm according to light exposure time. In the planktonic state, almost all bacteria were killed with 60 seconds of light exposure to F. nucleatum (99.1%) and with 15 seconds to P. gingivalis (100%). In the biofilm state, however, only the CFU of P. gingivalis demonstrated a decreasing tendency with increasing light exposure time, and there was a lower efficacy of phototoxicity to P. gingivalis as biofilm than in the planktonic state. Conclusions: Blue light exposure using a dental halogen curing unit is effective in reducing periodontal pathogens in the planktonic state. It is recommended that an adjunctive exogenous photosensitizer be used and that pathogens be exposed to visible light for clinical antimicrobial periodontal therapy.

Clinical Preventive Dental and Dental Hygiene Practice by Caries Management by Risk Assessment (CAMBRA) (Caries Management by Risk Assessment (CAMBRA) 모형에 따른 임상 예방치과 및 치위생 진료)

  • Cho, Young-Sik
    • Journal of dental hygiene science
    • /
    • v.12 no.6
    • /
    • pp.545-557
    • /
    • 2012
  • Dental caries is biofilm induced disease throughout life and is recognized significant oral health problem. This article reviewed new trends in dental caries management by risk assessment, including history, protocol/guideline, and collaborated model. Dental caries prevention and treatment according to caries management by risk assessment (CAMBRA) model is patient-centered, risk-based, evidence-based practice. Team approach is necessary and clinician need to integrate science, practice and product. Dental hygienist take a important role in implementing CAMBRA. CAMBRA model could be incorporated into clinical dental hygiene education based on dental hygiene process of care as standard of dental hygiene practice and education. Dentist and dental hygienist able to provide scientific and ethical care managing dental caries by risk assessment.

Effect of the Antimicrobial Peptide $\small{D}$-Nal-Pac-525 on the Growth of Streptococcus mutans and Its Biofilm Formation

  • Li, Huajun;Cheng, Jya-Wei;Yu, Hui-Yuan;Xin, Yi;Tang, Li;Ma, Yufang
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1070-1075
    • /
    • 2013
  • Streptococcus mutans is the primary etiological agent of dental caries. The antimicrobial peptide $\small{D}$-Nal-Pac-525 was designed by replacing the tryptophans of the Trp-rich peptide Pac-525 with $\small{D}$-${\beta}$-naphthyalanines. To assess the effect of $\small{D}$-Nal-Pac-525 on cariogenic bacteria, the activity of $\small{D}$-Nal-Pac-525 on the growth of S. mutans and its biofilm formation were examined. $\small{D}$-Nal-Pac-525 showed robust antimicrobial activity against S. mutans (minimum inhibitory concentration of 4 ${\mu}g/ml$). Using scanning electron microscopy and transmission electron microscopy, it was shown that $\small{D}$-Nal-Pac-525 caused morphological changes and damaged the cell membrane of S. mutans. $\small{D}$-Nal-Pac-525 inhibited biofilm formation of S. mutans at 2 ${\mu}g/ml$. The results of this study suggest that $\small{D}$-Nal-Pac-525 has great potential for clinical application as a dental caries-preventing agent.

Anti-Oral Microbial Effect of Ethanol Extract of Angelica gigas Nakai

  • Soon-Jeong Jeong
    • Journal of dental hygiene science
    • /
    • v.24 no.1
    • /
    • pp.54-61
    • /
    • 2024
  • Background: The Korean name for Angelica gigas Nakai (AGN) is Cham-dang-gui, which grows naturally or is cultivated, and its dried roots are used in traditional herbal medicines. The AGN root exert various pharmacological effects. Despite the various pharmacological effects of the AGN root, there are no reports on its anti-oral microbial effects. The purpose of this study was to reveal the anti-oral microbial effect and the microbial and biochemical changes in oral microorganisms according to the concentration of the ethanol extract of AGN (EAGN) root, and to confirm the possibility of using EAGN as a plant-derived functional substance for controlling oral infectious microorganisms. Methods: Disk diffusion test, growth measurement, biofilm formation assay, and measurements of acid production and buffering capacity were performed to confirm the antibacterial effect of EAGN. Results: EAGN showed anti-oral bacterial effects against Streptococcus mutans and Aggregatibacter actinomycetemcomitans at all concentrations, with S. mutans showing a more susceptible effect at concentrations above 5.0 mg/ml and A. actinomycetemcomitans at 3.75 mg/ml. EAGN treatment significantly reduced A. actinomycetemcomitans growth at all concentrations tested. Biofilm formation was significantly reduced at concentrations above 3.75 mg/ml for S. mutans and 2.5 mg/ml for A. actinomycetemcomitans. Acid production in S. mutans and A. actinomycetemcomitans was significantly increased by treatment with EAGN, and the buffering capacities of S. mutans and A. actinomycetemcomitans increased from an EAGN concentration of 3.75 mg/ml and above. Conclusion: EAGN showed anti-oral bacterial effects against both S. mutans and A. actinomycetemcomitans at concentrations above 3.75 mg/ml, which were thought to be related to the inhibition of their growth and biofilm formation. Therefore, EAGN can be used as a safe functional substance derived from medicinal plants owing to its antibacterial effects against S. mutans and A. actinomycetemcomitans.

Antifungal effects of synthetic human β-defensin 3-C15 peptide

  • Lim, Sang-Min;Ahn, Ki-Bum;Kim, Christine;Kum, Jong-Won;Perinpanayagam, Hiran;Gu, Yu;Yoo, Yeon-Jee;Chang, Seok Woo;Han, Seung Hyun;Shon, Won-Jun;Lee, Woocheol;Baek, Seung-Ho;Zhu, Qiang;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.2
    • /
    • pp.91-97
    • /
    • 2016
  • Objectives: The purpose of this ex vivo study was to compare the antifungal activity of a synthetic peptide consisting of 15 amino acids at the C-terminus of human ${\beta}$-defensin 3 (HBD3-C15) with calcium hydroxide (CH) and Nystatin (Nys) against Candida albicans (C. albicans) biofilm. Materials and Methods: C. albicans were grown on cover glass bottom dishes or human dentin disks for 48 hr, and then treated with HBD3-C15 (0, 12.5, 25, 50, 100, 150, 200, and $300{\mu}g/mL$), CH ($100{\mu}g/mL$), and Nys ($20{\mu}g/mL$) for 7 days at $37^{\circ}C$. On cover glass, live and dead cells in the biomass were measured by the FilmTracer Biofilm viability assay, and observed by confocal laser scanning microscopy (CLSM). On dentin, normal, diminished and ruptured cells were observed by field-emission scanning electron microscopy (FE-SEM). The results were subjected to a two-tailed t-test, a one way analysis variance and a post hoc test at a significance level of p = 0.05. Results: C. albicans survival on dentin was inhibited by HBD3-C15 in a dose-dependent manner. There were fewer aggregations of C. albicans in the groups of Nys and HBD3-C15 (${\geq}100{\mu}g/mL$). CLSM showed C. albicans survival was reduced by HBD3-C15 in a dose dependent manner. Nys and HBD3-C15 (${\geq}100{\mu}g/mL$) showed significant fungicidal activity compared to CH group (p < 0.05). Conclusions: Synthetic HBD3-C15 peptide (${\geq}100{\mu}g/mL$) and Nys exhibited significantly higher antifungal activity than CH against C. albicans by inhibiting cell survival and biofilm.

The bactericidal effect of an atmospheric-pressure plasma jet on Porphyromonas gingivalis biofilms on sandblasted and acid-etched titanium discs

  • Lee, Ji-Yoon;Kim, Kyoung-Hwa;Park, Shin-Young;Yoon, Sung-Young;Kim, Gon-Ho;Lee, Yong-Moo;Rhyu, In-Chul;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.5
    • /
    • pp.319-329
    • /
    • 2019
  • Purpose: Direct application of atmospheric-pressure plasma jets (APPJs) has been established as an effective method of microbial decontamination. This study aimed to investigate the bactericidal effect of direct application of an APPJ using helium gas (He-APPJ) on Porphyromonas gingivalis biofilms on sandblasted and acid-etched (SLA) titanium discs. Methods: On the SLA discs covered by P. gingivalis biofilms, an APPJ with helium (He) as a discharge gas was applied at 3 different time intervals (0, 3, and 5 minutes). To evaluate the effect of the plasma itself, the He gas-only group was used as the control group. The bactericidal effect of the He-APPJ was determined by the number of colony-forming units. Bacterial viability was observed by confocal laser scanning microscopy (CLSM), and bacterial morphology was examined by scanning electron microscopy (SEM). Results: As the plasma treatment time increased, the amount of P. gingivalis decreased, and the difference was statistically significant. In the SEM images, compared to the control group, the bacterial biofilm structure on SLA discs treated by the He-APPJ for more than 3 minutes was destroyed. In addition, the CLSM images showed consistent results. Even in sites distant from the area of direct He-APPJ exposure, decontamination effects were observed in both SEM and CLSM images. Conclusions: He-APPJ application was effective in removing P. gingivalis biofilm on SLA titanium discs in an in vitro experiment.

Antimicrobial Effect of Polyphenon 60 against Streptococcus mutans and Streptococcus sobrinus

  • Park, Tae-Young;Lim, Yun Kyong;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.43 no.3
    • /
    • pp.123-127
    • /
    • 2018
  • Polyphenon 60 refers to the mixture of catechins present in green tea. The aim of this study was to investigate the antimicrobial activities of polyphenon 60 against 4 strains of Streptococcus mutans and 2 strains of Streptococcus sorbrinus, which are the major causative bacteria of dental caries. The minimum bactericidal concentration (MBC) values of polyphenon 60 for S. mutans and S. sobrinus were determined and the effect of biofilm formation inhibition of that was evaluated. The MBC value of polyphenon 60 against the bacterial strains was 2.5 mg/ml except for one particular strain, S. mutans KCOM 1128 for which the value was 1.25 mg/ml. The results of biofilm formation inhibition assay revealed that polyphenon 60 inhibited biofilm formation more than 90% at a concentration of 2.5 mg/ml. It was apparent that polyphenon exhibited biofilm formation inhibition activity along with bactericidal effect against S. mutans and S. sobrinus. Therefore, it is proposed that polyphenon 60 as one of the components of bactericidal agents could be useful in developing oral hygiene products, toothpaste or gargling solution.