• Title/Summary/Keyword: Dental Implant Alloy

Search Result 107, Processing Time 0.024 seconds

Comparative evaluation of peri-implant stress distribution in implant protected occlusion and cuspally loaded occlusion on a 3 unit implant supported fixed partial denture: A 3D finite element analysis study

  • Acharya, Paramba Hitendrabhai;Patel, Vilas Valjibhai;Duseja, Sareen Subhash;Chauhan, Vishal Rajendrabhai
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.2
    • /
    • pp.79-88
    • /
    • 2021
  • Purpose. To assess peri-implant stress distribution using finite element analysis in implant supported fixed partial denture with occlusal schemes of cuspally loaded occlusion and implant protected occlusion. Materials and methods. A 3-D finite element model of mandible with D2 bone with partially edentulism with unilateral distal extension was made. Two Ti alloy identical implants with 4.2 mm diameter and 10 mm length were placed in the mandibular second premolar and the mandibular second molar region and prosthesis was given with the mandibular first molar pontic. Vertical load of 100 N and and oblique load of 70 N was applied on occlusal surface of prosthesis. Group 1 was cuspally loaded occlusion with total 8 contact points and Group 2 was implant protected occlusion with 3 contact points. Results. In Group 1 for vertical load, maximum stress was generated over implant having 14.3552 Mpa. While for oblique load, overall stress generated was 28.0732 Mpa. In Group 2 for vertical load, maximum stress was generated over crown and overall stress was 16.7682 Mpa. But for oblique load, crown stress and overall stress was maximum 22.7561 Mpa. When Group 1 is compared to Group 2, harmful oblique load caused maximum overall stress 28.0732 Mpa in Group 1. Conclusion. In Group 1, vertical load generated high implant stress, and oblique load generated high overall stresses, cortical stresses and crown stresses compared to vertical load. In Group 2, oblique load generated more overall stresses, cortical stresses, and crown stresses compared to vertical load. Implant protected occlusion generated lesser harmful oblique implant, crown, bone and overall stresses compared to cuspally loaded occlusion.

Assessment of the efficiency of a pre- versus post-acquisition metal artifact reduction algorithm in the presence of 3 different dental implant materials using multiple CBCT settings: An in vitro study

  • Shahmirzadi, Solaleh;Sharaf, Rana A.;Saadat, Sarang;Moore, William S.;Geha, Hassem;Tamimi, Dania;Kocasarac, Husniye Demirturk
    • Imaging Science in Dentistry
    • /
    • v.51 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • Purpose: The aim of this study was to assess artifacts generated in cone-beam computed tomography (CBCT) of 3 types of dental implants using 3 metal artifact reduction (MAR) algorithm conditions (pre-acquisition MAR, post-acquisition MAR, and no MAR), and 2 peak kilovoltage (kVp) settings. Materials and Methods: Titanium-zirconium, titanium, and zirconium alloy implants were placed in a dry mandible. CBCT images were acquired using 84 and 90 kVp and at normal resolution for all 3 MAR conditions. The images were analyzed using ImageJ software (National Institutes of Health, Bethesda, MD) to calculate the intensity of artifacts for each combination of material and settings. A 3-factor analysis of variance model with up to 3-way interactions was used to determine whether there was a statistically significant difference in the mean intensity of artifacts associated with each factor. Results: The analysis of all 3 MAR conditions showed that using no MAR resulted in substantially more severe artifacts than either of the 2 MAR algorithms for the 3 implant materials; however, there were no significant differences between pre- and post-acquisition MAR. The 90 kVp setting generated less intense artifacts on average than the 84 kVp setting. The titanium-zirconium alloy generated significantly less intense artifacts than zirconium. Titanium generated artifacts at an intermediate level relative to the other 2 implant materials, but was not statistically significantly different from either. Conclusion: This in vitro study suggests that artifacts can be minimized by using a titanium-zirconium alloy at the 90 kVp setting, with either MAR setting.

Finite element analysis of stress distribution on supporting bone of posterior implant partial dentures by loading location (유한요소 분석을 이용한 하중 위치에 따른 구치부 임플란트 국소의치 지지골의 응력 분포 연구)

  • Son, Sung-Sik;Kim, Young-Jick;Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.29 no.1
    • /
    • pp.93-101
    • /
    • 2007
  • The purpose of this study is to evaluate the effect of three different oblique mechanical loading to occlusal surfaces of posterior implant partial dentures on the stress distributions in surrounding bone, using 3-dimensional finite element method. A 3-dimensional finite element model of a posterior implant partial dentures composed of three unit implants, simplified 3 gold alloy crown and supporting bone was developed according to the design of AVANA self tapping implant for this study. Three kinds of surface distributed oblique loads(300 N) are applied to following occlusal surfaces in the three crowns; 1) All occlusal surfaces in the three crown(load of 300 N was shared to three crown), 2) Occlusal surface of centered crown (load of 300 N was applied to a centered crown), 3) Occlusal surface of proximal crown(load of 300 N was applied to a distal proximal crown). In the results, 141 MPa of maximum von Mises stress was calculated at third loading condition and 98 MPa of minimum von Mises stress was calculated at first loading condition. From the results, location and type of occlusive loading conditions are important for the safety of supporting bone.

  • PDF

Maxillary cement retained implant supported fixed prosthesis using the millingable Pd-Ag alloy generated by CAD/CAM system: clinical report after two years in service (상악 전부 무치악 환자에서 CAD/CAM 시스템으로 제작되는 Pd-Ag 합금을 이용한 고정성 임플란트 전악 수복 증례)

  • Lee, Jun-Sik;Han, Se-Jin;Choi, Yu-Sung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.1
    • /
    • pp.71-80
    • /
    • 2014
  • Full-mouth reconstruction of a patient using dental implants is a challenge if there is vertical and horizontal bone resorption. Therefore, it is should be cautious in making the fixed prostheses that restore the function and the esthetics of the gingiva and teeth. In full mouth rehabilitation, CAD/CAM system makes it possible to fabricate restorations with high precision, regardless of span of the restoration. Recently, Palladium-silver (Pd-Ag) alloy which is highly biocompatible and millingable has been developed to compensate for the shortcomings of the titanium or zirconia. This clinical report presents the reconstruction of a maxillary arch with a cement retained implant supported fixed prosthesis using a Pd-Ag alloy generated by CAD/CAM system on eleven osseointegrated implants. The occluding surfaces were made of Pd-Ag alloy, to decrease the risk of chipping or fracture. The prostheses were esthetically pleasing, and no clinical complications have been reported after two years.

THE EFFECT OF SUPPORTING BONE DESIGNED BY STRESS BREAKER TYPE IMPLANT DENTURE IN EXPERIMENTAL ANIMAL (Implant denture 에서 Stress breaker type가 주위골조직에 미치는 영향)

  • Suh, Chang-Hwan
    • The Journal of the Korean dental association
    • /
    • v.15 no.8
    • /
    • pp.623-626
    • /
    • 1977
  • The author made two implant blades of gold alloy metal, and applied CEKA attachment to one blade. These two blades were implanted at the sockets resulting from removal of both 3rd premolar of experimental dog. Simple crown and tooth supporting denture was constructed on the implanted blades the author observed above mentioned procedures for 8 weeks. The obtained results were as follows; 1) There is no remarkable necrosis of supporting alveolar bone on both sides So, metal reaction was favourable. 2) Masticatory force which is loaded on each tooth was not effective on the alveolar bone.

  • PDF

Comparison of mechanical and biological properties of zirconia and titanium alloy orthodontic micro-implants

  • Choi, Hae Won;Park, Young Seok;Chung, Shin Hye;Jung, Min Ho;Moon, Won;Rhee, Sang Hoon
    • The korean journal of orthodontics
    • /
    • v.47 no.4
    • /
    • pp.229-237
    • /
    • 2017
  • Objective: The aim of this study was to compare the initial stability as insertion and removal torque and the clinical applicability of novel orthodontic zirconia micro-implants made using a powder injection molding (PIM) technique with those parameters in conventional titanium micro-implants. Methods: Sixty zirconia and 60 titanium micro-implants of similar design (diameter, 1.6 mm; length, 8.0 mm) were inserted perpendicularly in solid polyurethane foam with varying densities of 20 pounds per cubic foot (pcf), 30 pcf, and 40 pcf. Primary stability was measured as maximum insertion torque (MIT) and maximum removal torque (MRT). To investigate clinical applicability, compressive and tensile forces were recorded at 0.01, 0.02, and 0.03 mm displacement of the implants at angles of $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$, and $40^{\circ}$. The biocompatibility of zirconia micro-implants was assessed via an experimental animal study. Results: There were no statistically significant differences between zirconia micro-implants and titanium alloy implants with regard to MIT, MRT, or the amount of movement in the angulated lateral displacement test. As angulation increased, the mean compressive and tensile forces required to displace both types of micro-implants increased substantially at all distances. The average bone-to-implant contact ratio of prototype zirconia micro-implants was $56.88{\pm}6.72%$. Conclusions: Zirconia micro-implants showed initial stability and clinical applicability for diverse orthodontic treatments comparable to that of titanium micro-implants under compressive and tensile forces.

Scintigraphic Evaluation of Alveolar Bone Following Dental Implantation in Dogs (개에서 치아 임플란트 식립후 치조골의 신티그라피 평가)

  • Kim, Joong-hyun;Lee, Jae-yeong;Kim, Myoung-hwan;Lee, Won-guk;Kang, Seong-soo;Choi, Seok-hwa
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.2
    • /
    • pp.289-294
    • /
    • 2003
  • This study aimed to determine of osseointegration following dental implantation in the dog mandible using bone scintigraphy. Five mongrel dogs, weighing approximately 8.5 kg and averaging 1.8 years of age, without active periodontal disease were used. During the entire study period, all dogs were fed a soft commercial diet and water ad libitum to minimize functional loading of the implant. Titanium alloy implant systems 10 mm in length and 4 mm in diameter were chosen for insertion. Twelve weeks prior to implantation, the second and third left mandibular premolars in each dog were extracted for the dental implant insertion. Before the dental implantation procedures and 0, 4, 8, and 12 weeks after the insertions, clinical observation, radiography and bone scintigraphy were conducted. The scintigraphy was obtained using a large field of view gamma camera equipped with a paralled-hole, low-energy collimator about 3 hours after intravenous injection of Tc-99m-MDP (8 mCi/dog) to the dogs. There were not inflammation sign after insertion of dental implants on the mandible in dogs. Implants were slightly movable at the first and fourth weeks, and there was no mobility after 8 weeks. Twelve weeks after dental implantation, the bone uptake scintigraphy of peri-implant bone was similar to that of normal alveolar bone, indicating that peri-implant bone was completely regenerated by new bone. In conclusion, we recommend stable implant fixation with alveolar bone for the accurate and safe repair of teeth loot due to decacy, trauma or peridontal disease. Titanium alloy implants were optimal due to their biocompatibility.

CT and scintigraphic evaluation of osseointegration following immediate versus delayed implantation in dogs (개에서 즉시형과 지연형 인공치아 식립후 골유합에 대한 CT와 신티그라피 평가)

  • Kim, Juoog-Hyun;Lee, Jae Yeong;Lee, Won-Guk;Oh, Won Young;Kim, So-Seob;Kang, Seong Soo;Choi, Seok Hwa
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.1
    • /
    • pp.131-136
    • /
    • 2004
  • Osseointegration involves anchoring dental implants to stable bone rather than to soft-tissue. Clinical osseointegration is currently defined as the process whereby alloplastic material is asymptomatically and rigidly fixed and maintained in bone during functional loading. Full osseointegration is necessary for the success of long-term dental implants. Recent developments in computer assisted measurement of bone formation have improved maxillofacial examination and osseointegration. Computer assisted examination has also proved effective in dental implantology. This investigation was aimed to determine osseointegration in immediate and delayed implantation in the dog mandible using dental computed tomography (CT) and bone scintigraphy. Five adult (mean age of 2 years) mongrel dogs with a mean weight of 9.1 kg were used in this investigation. Titanium alloy implant systems with 4 mm in diameter and 10 mm in length were chosen for insertion. The second and third left mandibular premolars in each dog were extracted for the delayed implant insertion. Twelve weeks later, the second and third right mandibular premolars were extracted for the immediate implant insertion. Before the delayed and immediate implantation procedures and 0, 4, 8, and 12 weeks after the insertions, dental CT and scintigraphy were conducted. The CT and scintigraphic images indicate that reconstruction of bone surrounding of the immediate implant can be as successful as reconstruction of bone surrounding of the delayed implant.

Surface Observation of Mg-HA Coated Ti-6Al-4V Alloy by Plasma Electrolytic Oxidation

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.198-198
    • /
    • 2016
  • An ideal orthopedic implant should provide an excellent bone-implant connection, less implant loosening and minimum adverse reactions. Commercial pure titanium (CP-Ti) and Ti alloys have been widely utilized for biomedical applications such as orthopedic and dental implants. However, being bioinert, the integration of such implant in bone was not in good condition to achieve improved osseointegraiton, there have been many efforts to modify the composition and topography of implant surface. These processes are generally classified as physical, chemical, and electrochemical methods. Plasma electrolytic oxidation (PEO) as an electrochemical route has been recently utilized to produce this kind of composite coatings. Mg ion plays a key role in bone metabolism, since it influences osteoblast and osteoclast activity. From previous studies, it has been found that Mg ions improve the bone formation on Ti alloys. PEO is a promising technology to produce porous and firmly adherent inorganic Mg containing $TiO_2$($Mg-TiO_2$ ) coatings on Ti surface, and the amount of Mg introduced into the coatings can be optimized by altering the electrolyte composition. In this study, a series of $Mg-TiO_2$ coatings are produced on Ti-6Al-4V ELI dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. Based on the preliminary analysis of the coating structure, composition and morphology, a bone like apatite formation model is used to evaluate the in vitro biological responses at the bone-implant interface. The enhancement of the bone like apatite forming ability arises from $Mg-TiO_2$ surface, which has formed the reduction of the Mg ions. The promising results successfully demonstrate the immense potential of $Mg-TiO_2$ coatings in dental and biomaterials applications.

  • PDF