• Title/Summary/Keyword: Dental Engineering

Search Result 1,047, Processing Time 0.032 seconds

Measurement of Mechanical Properties of a Thermally Evaporated Gold Film Using Blister Test (블리스터 시험법을 이용한 열증착 금박막의 기계적 성질 측정)

  • Moon, Ho-Jeong;Ham, Soon-Sik;Earmme, Yun-Young;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.882-890
    • /
    • 1996
  • Mechanical properties, including Young's modulus, residual stress and rupture strength, of a thermally evaporated gold film have been measured form a blister test. In a theoretical study, the priniple of minimum potential energy and that of virtual work have been applied to the pressurized circular membrane problem, and load-deflection relations have been derived for typical membrane deflection mode of spheroidal shape. In an experimental study, circular gold membranes of 4800 A-thickness and 3.5mm diameter were fabricated by the silicon electropolishing technique. Mecahnical properties of the thin gold films were deduced from the load-deflection curves obtained by the blister test, Young's moduli, obtianed from blister test, have been in the range of 45-70 GPa, while those of bulk gold have been in the range of 78-80 GPa. Residual stresses in the evaporated gold films have been measured as 28-110MPa in tension, The rupture strength of the gold film has turned out to be almost equal to that of dental gold alloy (310-380MPa). It has been demonstrated that the present specimen fabrication method and blister test apparatus have been effective for simultaneous measurement of Young's modulus, residual stress and repture strength of thin solid films. Especially, the electropolishing technique employed here has provided a simple and practical way to fabricate thin membranes in a circular or an arbitrary shape, which could not be obtained by the conventional anisotropic silicon mecromachining technique.

Design and Evaluation of Ultrasonic dental scaler produced for Finite Element Analysis (유한요소 해석을 통한 치과용 초음파 Scaler의 설계 및 평가)

  • Kim, Chul-Min;Lee, Young-Jin;Jeong, Young-Hun;Paik, Jong-Hoo;Kang, Kook-Jin;Lee, Jeong-Bae;Lee, Seung-Dae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.20-20
    • /
    • 2009
  • 치아의 치석제거 및 치골절삭에 사용되는 초음파 스케일러는 일반적으로 마그넷형과 압전형으로 구분할 수 있으며, 최근에 들어 소형화, 저전력, 정밀성, 저비용 등의 장점으로 인해 압전형이 주로 사용되고 있다. 국내의 대부분의 치과에서 한 대 이상 운용되는 초음파 스케일러는 대부분 유럽 제품으로며, 국내에서는 이를 대체하기 위한 제품이 출시되고 있으나 아직까지 유럽 제품에 비해 출력강도, 정밀도 등에서 성능이 모자란 현실로 시장에서 외면 받고 있다. 본 연구에서는 앞서 언급한 압전 초음파 스케일러에 대한 체계적인 연구를 진행하여 외국에 비해 상대적으로 성능이 떨어지는 초음파 스케일러의 성능을 개선하고자 하였다. 이를 위하여 스케일러의 진동 발생부, 즉 압전 세라믹과 SUS 재질의 head, tail 부로 구성된 진동발생부의 최적구조톨 도출하기 위하여 유한요소 해석을 실시하였으며, 스케일러의 중심주파수 28kHz에서 최대 출력이 발생할 수 있는 구조를 도출하였다. 스케일러의 Head 와 Tail 부문의 두께와 직경, 길이 변화에 따른 중심주파수 및 출력 변위의 경향분석을 실시하였으며, 이상의 결과를 바탕으로 실제 스케일러를 제작하여 시뮬레이션의 유효성을 검증하였다. 이상의 과정으로 거쳐 개발된 압전 초음파 스케일러는 다양한 Tip 종류의 영향을 최소화할 수 있으며, 중심주파수는 28~30kHz 에서 뛰어난 성능을 나타내어 기종 유럽제품의 성능을 앞지르는 특성을 확보할 수 있었다.

  • PDF

ACCURACY TESTS OF 3D RAPID PROTOTYPING (RP) MEDICAL MODELS: ITS POTENTIAL AND CLINICAL APPLICATIONS (Rapid Prototyping으로 제작한 3D Medical Model의 오차 측정에 관한 연구 (임상 적용 가능성 및 사례))

  • Choi, Jin-Young;Choi, Jung-Ho;Kim, Nam-Kuk;Lee, Jong-Ki;Kim, Myeng-Ki;Kim, Myung-Jin;Kim, Yeong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.25 no.4
    • /
    • pp.295-303
    • /
    • 1999
  • Presented in this paper are the experimental results that measure rapid prototyping (RP) errors in 3D medical models. We identified various factors that can cause dimensional errors when producing RP models, specifically in maxillofacial areas. For the experiment, we used a human dry skull. A number of linear measurements based on landmarks were first obtained on the skull. This was followed by CT scanning, 3D model reconstruction, and RP model fabrication. The landmarks were measured again on both the reconstructed models and the physical RP models, and these were compared with those on dry skull. We focused on major sources of errors, such as CT scanning, conversion from CT data to STL models, and RP model fabrication. The results show that the overall error from skull to RP is $0.64{\times}0.36mm(0.71{\times}0.66%)$ in absolute value. This indicates that the RP technology can be acceptable in the real clinical applications. A clinical case that has applied RP models successfully for treatment planning and surgical rehearsal is presented. Although the use of RP models is rare in the medical area yet, we believe RP is promising in that it has a great potential in developing new tools which can aid diagnosis, treatment planning, surgical rehearsal, education, and so on.

  • PDF

A Study of Electro-Discharge-Sintering of Ti-6Al-4V Spherical Powders Doped with Hydroxyapatite by Spex Milling and Its Consolidation Characteristics (Hydroxyapatite가 도핑된 Ti-6Al-4V 구형 분말의 전기방전 소결 및 소결체 특성에 관한 연구)

  • Cho, Y.J.;Kim, Y.H.;Jo, Y.H.;Kim, M.J.;Kim, H.S.;Kim, S.W.;Park, J.H.;Lee, W.H.
    • Journal of Powder Materials
    • /
    • v.20 no.5
    • /
    • pp.376-381
    • /
    • 2013
  • Spherical Ti-6Al-4V powders in the size range of 250 and 300 ${\mu}m$ were uniformly doped with nano-sized hydroxyapatite (HAp) powders by Spex milling process. A single pulse of 0.75-2.0 kJ/0.7 g of the Ti-6Al-4V powders doped with HAp from 300 mF capacitor was applied to produce fully porous and porous-surfaced Ti-6Al-4V implant compact by electro-discharge-sintering (EDS). The solid core was automatically formed in the center of the compact after discharge and porous layer consisted of particles connected in three dimensions by necks. The solid core increased with an increase in input energy. The compressive yield strength was in a range of 41 to 215 MPa and significantly depended on input energy. X-ray photoelectron spectroscopy and energy dispersive x-ray spectrometer were used to investigate the surface characteristics of the Ti-6Al-4V compact. Ti and O were the main constituents, with smaller amount of Ca and P. It was thus concluded that the porous-surfaced Ti-6Al-4V implant compacts doped with HAp can be efficiently produced by manipulating the milling and electro-discharge-sintering processes.

Synthesis of Yttria Stabilized Zirconia by Sol-gel Precipitation Using PEG and PVA as Stabilizing Agent

  • Bramhe, Sachin N.;Lee, Young Pil;Nguyen, Tuan Dung;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.441-446
    • /
    • 2013
  • There is increasing interest in zirconia as a dental material due to its aesthetics, as well as the exceptionally high fracture toughness and high strength that are on offer when it is alloyed with certain oxides like yttria. In recent years, many solution based chemical synthesis methods have been reported for synthesis of zirconia, of which the sol-gel method is considered to be best. Here, we synthesize zirconia by a sol gel assisted precipitation method using either PEG or PVA as a stabilizing agent. Zirconia sol is first synthesized using the hydrothermal method. We used NaOH as the precipitating agent in this method because it is easy to remove from the final solution. Zirconium and yttrium salts are used as precursors and PEG or PVA are used as stabilizers to separate the metal ions. The resulting amorphous zirconia powder is calcined at $900^{\circ}C$ for 2 h to get crystallized zirconia. XRD analysis confirmed the partially stabilized zirconia synthesis in all the synthesized powders. SEM was taken to check the morphology of the powder synthesized using either PEG or PVA as a stabilizing agent and finally the transparency was calculated. The results confirmed that the powder synthesized with 10 % PVA as the stabilizing agent had highest percentage of transparency among all the synthesized powder.

Synthesis and Characterization of Fructooligosaccharides Using Levansucrase with a High Concentration of Sucrose

  • Seo Eun-Seong;Lee Jin-Ha;Choi Jae-Young;Seo Mi-Young;Lee Hee-Sun;Chang Seuk-Sang;Lee Hyung-Jong;Choi Jeong-Sik;Kim Doman
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.5
    • /
    • pp.339-344
    • /
    • 2004
  • A method for synthesizing branched fructo-oligosaccharides (BFOS) with a high concentration of sucrose ($1{\~}3$ M) was developed using levansucrase prepared from Leuconortoc mesenteroides B-1355C. The degree of polymerization of oligosaccharides synthesized according to the present method ranged from 2 to over 15. The synthesized BFOS were stable at a pH ranges of 2 to 4 under $120^{\circ}C$. The percentage of BFOS in the reaction digest was $95.7\%$ (excluding monosaccharides; $4.3\%$ was levan). BFOS reduced the insoluble glucan formation by Streptococcus sobrinus on the surfaces of glass vials or stainless steel wires in the presence of sucrose. They also reduced the growth and acid productions of S, sobrinus. Oligosaccharides can be used as sweeteners for foods such as beverages requiring thermo- and acid-stable properties and 3s potential inhibitors of dental caries.

Respiratory air flow measuring technique without sensing element on the flow stream (호흡경로 상에 감지소자가 없는 새로운 호흡기류 계측기술)

  • Lee, In-Kwang;Park, Jun-Oh;Lee, Su-Ok;Shin, Eun-Young;Kim, Kyung-Chun;Kim, Kyung-Ah;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.294-300
    • /
    • 2009
  • Cardiopulmonary resuscitation(CPR) is performed by artificial ventilation and thoracic compression for the patient under emergent situation to maintain at least the minimum level of respiration and blood circulation for life survival. Quality of the pre-hospital CPR not only significantly affects the patient's survival rate but also minimizes side effects caused by CPR. Good quality CPR requires monitoring respiration, however, traditional respiratory air flow transducers cannot be used because the transducer elements are located on the flow axis. The present study developed a new technique with no physical object on the flow stream but enabling the air flow measurement and easily incorporated with the CPR devices. A turbulence chamber was formed in the middle of the respiratory tube by locally enlarging the cross-sectional area where the flow related turbulence was generated inducing energy loss which was in turn converted into pressure difference. The turbulence chamber was simply an empty enlarged air space, thus no physical object was placed on the flow stream, but still the flow rate could be evaluated. Both inspiratory and expiratory flows were obtained with symmetric measurement characteristics. Quadratic curve fitting provided excellent calibration formula with a correlation coefficient>0.999 (P<0.0001) and the mean relative error<1 %. The present results can be usefully applied to accurately monitor the air flow rate during CPR.

The fabrication and characterization of hard rock cutting diamond saw (석재가공용 다이아몬드 톱의 제조 및 특성)

  • Lee Hyun-Woo;Jeon Woo-yong;Lee Oh-yeon;Seol Kyeong-won
    • Journal of Powder Materials
    • /
    • v.11 no.5
    • /
    • pp.412-420
    • /
    • 2004
  • The purpose of the present study is to determine an optimum composition using cheaper powders keeping with high performance of hard rock cutting diamond saw blade. With 50Fe-20(Cu . Sn)-30Co specimen, a part of Co was replaced by Ni(5%, 10%, and 15%, respectively). These specimens were hot pressed and sintered for predetermined time at various temperature. Sintering is performed by two different methods of temperature controlled method and specimen dimension controlled method. In order to determine the property of the sintered diamond saw blade, 3 point bending tester, X-ray diffractometer, and SEM were used. As the Co in the bond alloy was replaced by Ni, the hardness of the specimen increased. Thus the 50Fe-20(CuㆍSn)-15Co-15Ni specimen showed the maximum hardness of 104(HRB). The results of 3 point bending test showed that flexure strength decreased along with increase in Ni content. This is attributed to the formation of intermetallic compound(Ni$_{x}$Sn) determined by X-ray diffraction. The fracture surface after 3 point bending test showed that diamond was fractured in the specimen containing 0%, 5%, and 10%Ni, and the fracture occurred at the interface between diamond and matrix in the specimen containing 15%Ni. The cutting ability test showed that the abrasive property was not changed in the specimen containing 0%, 5%, and 10%Ni. The optimum composition determined in this study is 50Fe-20(CuㆍSn)-20Co-10Ni.

Finite element modeling technique for predicting mechanical behaviors on mandible bone during mastication

  • Kim, Hee-Sun;Park, Jae-Yong;Kim, Na-Eun;Shin, Yeong-Soo;Park, Ji-Man;Chun, Youn-Sic
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.4
    • /
    • pp.218-226
    • /
    • 2012
  • PURPOSE. The purpose of this study was to propose finite element (FE) modeling methods for predicting stress distributions on teeth and mandible under chewing action. MATERIALS AND METHODS. For FE model generation, CT images of skull were translated into 3D FE models, and static analysis was performed considering linear material behaviors and nonlinear geometrical effect. To find out proper boundary and loading conditions, parametric studies were performed with various areas and directions of restraints and loading. The loading directions are prescribed to be same as direction of masseter muscle, which was referred from anatomy chart and CT image. From the analysis, strain and stress distributions of teeth and mandible were obtained and compared with experimental data for model validation. RESULTS. As a result of FE analysis, the optimized boundary condition was chosen such that 8 teeth were fixed in all directions and condyloid process was fixed in all directions except for forward and backward directions. Also, fixing a part of mandible in a lateral direction, where medial pterygoid muscle was attached, gave the more proper analytical results. Loading was prescribed in a same direction as masseter muscle. The tendency of strain distributions between the teeth predicted from the proposed model were compared with experimental results and showed good agreements. CONCLUSION. This study proposes cost efficient FE modeling method for predicting stress distributions on teeth and mandible under chewing action. The proposed modeling method is validated with experimental data and can further be used to evaluate structural safety of dental prosthesis.

THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION AND PRELOAD OF DIFFERENT CONNECTION TYPES IMPLANT WITH INITIAL CLAMPING (임플랜트의 체결방식에 따른 초기조임력에 의한 응력분포 및 전하중에 관한 연구)

  • Lee Bum-Hyun;Chun Heoung-Jae;Lee Soo-Hong;Han Chong-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.197-206
    • /
    • 2006
  • Statement of problem: One of common problems associated with single teeth dental implant prosthetic is the loosening of screws that retain the implants. Purpose: The maintenance of screw joint stability is considered a function of the preload achieved in the screw when the suggested initial tightening torque is applied. The purpose of this study was to investigate acquired preload after initial clamping torque for estimating screw joint stability. Material and methods: A comparative study on the effect of initial clamping of two types of implant systems with different connections was conducted Three dimensional non-linear finite element analysis is adopted to compare the characteristics of screw preloads and stress distributions between two different types of implant systems composed with abutment, screw, and fixture under the same loading and boundary conditions. Results: 1. When the initial clamping torque of 32Ncm was applied to the implant systems, all types of implants generated the maximum effective stress at the first helix region of screw. 2. Morse taper connection types of implants generate lower stress distributions compared to those by butt joint connection types or implants due to large contact surface between abutment and fixture. 3. The internal types of implant systems with friction grip type implant systems have higher resistance to screw loosening than that of the external types of implant systems since the internal types of implant systems generated larger preload than that generated by the external types for the same tightening moments.