• Title/Summary/Keyword: Dental Engineering

Search Result 1,057, Processing Time 0.029 seconds

Bone-like Apatite Formation on Ultrafine-Structure in Modified Electrolytic Solution

  • Jang, Jae-Myung;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.155-155
    • /
    • 2017
  • Surface modifications are commonly utilized to adjust the properties of the titanium and its alloy surface to the specific needs of the medical applications, but there are disadvantages such as poor osteoconductive properties and low adhesion of bone cell to implant surface. In order to improve these disadvantages, changes in surface properties have an important effect on osseointegration during implantation. In this paper we applied new technological method for improving a unique surface modification using the characteristic of an electrolytic Solution. Thus, in the electrolyte containing NaF in Na2SO4, TiO2 nanoporous was uniformly formed, and HAp nanoparticles were electrodeposited around the TiO2 nanopores, but in the electrolyte containing NH4F in (NH4)H2PO4, the coarse protrusions including HAp nano particles were regularly deposited onto the TiO2 barrier layer. The surface characteristics and the distributed elements and have been investigated by EDS analysis, and ultra-fine structure of surface are carried out using FE-SEM. To investigate the behavior of the anion, the analysis of chemical states was performed by XPS, and the narrow spectrums for Ti2P, Ca 2p, and P 2p seems to be almost similar depending on the characteristics of the electrolyte solution respectively. In addition, Ca 2p spectrum could be resolved into two peaks for Ca 2p3/2 and 2p1/2 at 347.4 and 351.3 eV, which are related to hydroxyapatite. And, the P peak can also be deconvoluted into two peaks for P1/2 and P3/2 levels with binding energy 134.2 and 133.4 eV, respectively. From the result of soaking test, the apatite morphologys were well-formed onto the modified surface according to the different conditions.

  • PDF

Analysis of Biocompatible TiO2 Oxide Multilayer by the XPS Depth Profiling

  • Jang, Jae-Myung;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.156-156
    • /
    • 2017
  • In this work, analysis of biocompatible TiO2 oxide multilayer by the XPS depth profiling was researched. the manufacture of the TiO2 barrier-type multilayer was accurately performed in a mixed electrolyte containing HAp, Pd, and Ag nanoparticles. The temperature of the solution was kept at approximatively $32^{\circ}C$ and was regularly rotated by a magnetic stirring rod in order to increase the ionic diffusion rate. The manufactured specimens were carefully analyzed by XPS depth profile to investigate the result of chemical bonding behaviors. From the analysis of chemical states of the TiO2 oxide multilayer using XPS, the peaks are showed with the typical signal of Ti oxide at 459.1 eV and 464.8 eV, due to Ti 2p(3/2) and Ti 2p(1/2), respectively. The Pd-3d peak was split into Pd-3d(5/2) and Pd-3d(3/2)peaks, and shows two bands at 334.7 and 339.9 eV for Pd-3d3 and Pd-3d5, respectively. Also, the peaks of Ag-3d have been investigated. The chemical states consisted of the O-1s, P-2p, and Ti-2p were identified in the forms of PO42- and PO43-. Based on the results of the chemical states, the chemical elements into the TiO2 oxide multilayer were also inferred to be penetrated from the electrolyte during anodic process.The structure characterization of the modified surface were performed by using FE-SEM, and from the result of biological evaluation in simulated body fluid(SBF), the biocompatibility of TiO2 oxide multilayer was effective for bioactive property.

  • PDF

Si and Mg Coatings on the Hydroxyapatite Film Formed Ti-29Nb-xHf Alloys by Plasma Electrolyte Oxidation

  • Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.152-152
    • /
    • 2017
  • Titanium and its alloys have been widely used for biomedical applications. However, the use of the Ti-6Al-4V alloy in biomaterial is then a subject of controversy because aluminum ions and vanadium oxide have potential detrimental influence on the human body due to vanadium and aluminum. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element,such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}$-stabilizer and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Silicon (Si) and magnesium (Mg) has a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. In vitro studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. Therefore, in this study, Si and Mg coatings on the hydroxyapatite film formed Ti-29Nb-xHf alloys by plasma electrolyte oxidation has been investigated using several experimental techniques. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. The electrolyte was Si and Mg ions containing calcium acetate monohydrate + calcium glycerophosphate at room temperature. The microstructure, phase and composition of Si and Mg coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Corrosion Charateristics of PEO-treated Ti-6Al-4V Alloy in Solution Containing Si and Mg Ions

  • Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.153-153
    • /
    • 2017
  • The application of the coating supports the mechanical characteristics of the implant, and various materials and coatings are currently being used in the implant in a way to accelerate adhesion. Especially, plasma electrolytic oxidation (PEO) coating has been proposed continually with good surface treatment of titanium alloys. Also, the PEO process can incorporate Ca and P ions on the titanium surface through variables varied factor. PEO process for bioactive surface has carried out in electrolytes containing Ca and P ions. Natural bone is composed of mineral elements such as Mg, Si, Zn, Sr, and Mn, etc. Especially, Mg and Si of these elements play role in bone formation and growth after clinical implantation of bio-implants. In this study, corrosion charateristics of PEO-treated Ti-6Al-4V alloy in solution containing Si and Mg ions has been investigated using several experimental techniques. The PEO-treated surfaces were identified by X-ray diffraction, using a diffractometer (XRD, Philips X' pert PRO, Netherlands) with Cu $K{\alpha}$ radiation. The morphology was observed by field-emission scanning electron microscopy (FE-SEM, Hitachi 4800, Japan) and energy-dispersive X-ray spectroscopy (EDX, Oxford ISIS 310, England). The potentiodynamic polarization and AC impedance tests for electrochemical degradations were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV.

  • PDF

Automatic Registration of Images for Digital Subtraction Radiography Using Local Correlation (국소적 상관계수를 이용한 자동적 디지털 방사선 영상정합)

  • 이원진;허민석;이삼선;최순철;이재성
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.111-117
    • /
    • 2004
  • Most of digital subtraction methods in dental radiography are based on registration using manual landmarks. We have developed an automatic registration method without using the manual selection of landmarks. By restricting a geometrical matching of images to a region of interest (ROl), we compare the cross-correlation coefficient only between the ROIs. The affine or perspective transform parameters satisfying maximum of cross-correlation between the local regions are searched iteratively by a fast searching strategy. The parameters are searched on the 1/4 scale image coarsely and then, the fine registration is performed on the original scale image. The developed method can match the images corrupted by Gaussian noise with the same accuracy for the images without any transform simulation. The registration accuracy of the perspective method shows a 17% improvement over the manual method. The application of the developed method to radiography of dental implants provides an automatic noise robust registration with high accuracy in almost real time.

A Study of the Standardization in the Mandibular First Premolar of the Middle Aged Korean (중년층 한국인 하악 제1소구치의 표준화 연구)

  • Chun, Keyoung-Jin;Lee, Ho-Jung;Chung, Dong-Teak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.154-163
    • /
    • 2006
  • Tooth morphology is the most important scientific aspect of dental medicine in regards to the treatment and study of teeth attrition relating to the absence of teeth due to dental caries or the occlusion of teeth due to external force. Most of the studies have focused on the external morphology in cutting teeth regardless of sex and age. However, the importance of internal morphology in the treatment of damaged teeth has been increased. Therefore, this study established the measurement criteria for the morphology of the mandibular first premolar which had never been presented, in order to investigate the external and internal morphologies of mandibular first premolars, and introduced a non-destructive method such as a microcomputed tomogrphy. Mandibular first premolars in superlative state were taken from molars of middle aged males and females and used as specimens for this study. Criteria relating to the internal and external morphology measurements were established to quantify the length of the teeth in identical state. Two dimensional image data for the selected mandibular first premolar were obtained by taking the image of each O.022mm section, which is perpendicular to the vertical direction using the microcomputed tomography. The Vworks program was applied to measure the length of each morphological part according to the set measurement criteria. These measured data were compared with the data presented by G. V. Black and the internal and external morphologies of the teeth of middle aged Koreans were also compared according to gender. In addition, the methodology for measurement of the mandibular first premolar was presented and according to this, the standardized mandibular first premolars of middle aged Korean males and females were made by using a rapid prototyping system.

Formation of Bioactive Surface by PEO-treatment after 2nd ATO Technique of Ti-6Al-4V Alloy (Ti-6Al-4V 합금에 2nd ATO 처리 후 플라즈마 전해 산화법에 의한 생체활성표면형성)

  • Lim, Sang-Gyu;Cho, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.74-74
    • /
    • 2018
  • Ti-6Al-4V alloys have been widely used as orthopedic materials because of their excellent corrosion resistance and mechanical properties. However, it does not bind directly to the bone, so it requires a surface modification. This problem can be solved by nanotube and micropore formation. Plasma electrolytic oxidation (PEO) treatment for micropore, which combines high-voltage spark and electrochemical oxidation, is a new way of forming a ceramic coating on light metals such as titanium and its alloys. This method has excellent reproducibility and can easily control the shape and size of the Ti alloy. In this study, formation of bioactive surface by PEO-treatment after $2^{nd}$ ATO technique of Ti-6Al-4V alloy was invesgated by various instrument. Nanotube oxide surface structure was formed on the surface by anodic oxidation treatment in 0.8 wt.% NaF and 1M $H_3PO_4$ electrolytes. After nanotube formation, nanotube layer was removed by ultrasonic cleaning. PEO-treatment was carried out at 280V for 3 minutes in the electrolytic solution containing the bioactive substance (Mg, Zn, Mn, Sr, and Si). The surface of Ti-6Al-4V alloy was observed by field emission scanning electron microscopy (FE-SEM, S-4800 Hitachi, Japan). An energy dispersive X-ray spectrometer (EDS, Inca program, Oxford, UK) was used to analyze the spectra of physiologically active Si, Mn, Mg, Zn, and Sr ions. The PEO film formed on the Ti-6Al-4V alloy surface was characterized using an X-ray diffractometer (TF-XRD, X'pert Philips, Netherlands). It is confirmed that bioactive ions play an essential role in the normal bone growth and metabolism of the human skeletal tissues.

  • PDF

Effects of Cooling Method Followed by Casting on the Interfacial and Mechanical Properties of Dental CP-Ti Casts (치과용 티타늄 주조체의 냉각방법이 표면반응층 및 기계적 특성에 미치는 영향)

  • Moon, Soo;Jung, Jun-Young;Kim, Ki-Ju;Lee, Jin-Hyung
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.375-380
    • /
    • 2003
  • In this study. we have intended to control the properties of surface reaction zone generated between pure titanium and oxide investment moulds. Commercially pure titanium was centrifugally casted and silica$.$alumina based phosphate bonded investment was used as the mould material. The effect of cooling methods after casting on the surface reaction zone and mechanical properties of casts were investigated. The resulting casts showed the multilayered surface reaction zone regardless of cooling method. Especially. water cooling method produced the titanium casts with thinner surface reaction zone. weaker strength. and higher elongation properties compared to air cooling. It can thus be known that the resulting casts had satisfactory mechanical properties as dental materials. From these results, the cooling rate dependence of interfacial and mechanical properties can be attributed to the diffusion of oxygen from casting environment, which control the reaction of titanium and mould.

Detecting Incipient Caries Using Front-illuminated Infrared Light Scattering Imaging

  • Kim, Ji-Young;Ro, Jung-Hoon;Jeon, Gye-Rok;Kim, Jin-Bom;Ye, Soo-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.310-316
    • /
    • 2012
  • A new method for early caries diagnosis was proposed and tested through a home-made optical examination system that used quantitative light fluorescence (QLF) and digital imaging fiber optic transillumination (FOTI) (DIFOTI), with light sources across a wide spectral range, from 350 nm to 1,000 nm. The front-illuminated infrared light scattering image (FIR) showed similar diagnostic abilities to that of DIFOTI. The FIR method was invented based on the observation that caries lesions lose the high transmittance and low scattering properties of benign enamel tissue. There are various methods for the early diagnosis of caries, such as visual examination, exploration, X-ray radiography, QLF, FOTI, and infrared fluorescence (diagnodent). Among them, methods based on optical properties are regarded as having the most potential. A comparative study was performed between the FOTI, QLF, diagnodent, optical coherence tomography, and FIR scattering image methods, using 20 extracted teeth samples with early caries. A scale of lesion measurement based on optical image contrast was proposed. The statistical analysis showed a significant correlation between the DIFOTI and FIR methods (r = 0.35, p < 0.05). However, the QLF and diagnodent methods showed little association with FIR images, as they have different detection principles as compared with FIR. Tomographic images obtained by OCT, using 1,330 nm super luminescent LED as a gold standard of tooth structure, verified that the FOTI and FIR results correctly represented the lack of homogeneity in dental tissue. The newly proposed FIR method attained similar diagnostic results to those of FOTI, but with an easier approach.

Periodontal tissue reaction to customized nano-hydroxyapatite block scaffold in one-wall intrabony defect: a histologic study in dogs

  • Lee, Jung-Seok;Park, Weon-Yeong;Cha, Jae-Kook;Jung, Ui-Won;Kim, Chang-Sung;Lee, Yong-Keun;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.2
    • /
    • pp.50-58
    • /
    • 2012
  • Purpose: This study evaluated histologically the tissue responses to and the effects of a customized nano-hydroxyapatite (n-HA) block bone graft on periodontal regeneration in a one-wall periodontal-defect model. Methods: A customized block bone for filling in the standardized periodontal defect was fabricated from prefabricated n-HA powders and a polymeric sponge. Bilateral $4{\times}{\times}4{\times}5$ mm (buccolingual width${\times}$mesiodistal width${\times}$depth), one-wall, critical-size intrabony periodontal defects were surgically created at the mandibular second and fourth premolars of five Beagle dogs. In each dog, one defect was filled with block-type HA and the other served as a sham-surgery control. The animals were sacrificed following an 8-week healing interval for clinical and histological evaluations. Results: Although the sites that received an n-HA block showed minimal bone formation, the n-HA block was maintained within the defect with its original hexahedral shape. In addition, only a limited inflammatory reaction was observed at sites that received an n-HA block, which might have been due to the high stability of the customized block bone. Conclusions: In the limitation of this study, customized n-HA block could provide a space for periodontal tissue engineering, with minimal inflammation.