• Title/Summary/Keyword: Dental Engineering

Search Result 1,045, Processing Time 0.027 seconds

Surface Characteristics of Type II Anodized Ti-6Al-4V Alloy for Biomedical Applications

  • Lee, Su-Won;Jeong, Tae-Gon;Yang, Jae-Ung;Jeong, Jae-Yeong;Park, Gwang-Min;Jeong, Yong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.77-77
    • /
    • 2017
  • Titanium and its alloys offer attractive properties in a variety of applications. These are widely used for the field of biomedical implants because of its good biocompatibility and high corrosion resistance. Titanium anodizing is often used in the metal finishing of products, especially those can be used in the medical devices with dense oxide surface. Based on SAE/AMS (Society of Automotive Engineers/Aerospace Material Specification) 2488D, it has the specification for industrial titanium anodizing that have three different types of titanium anodization as following: Type I is used as a coating for elevated temperature forming; Type II is used as an anti-galling coating without additional lubrication or as a pre-treatment for improving adherence of film lubricants; Type III is used as a treatment to produce a spectrum of surface colours on titanium. In this study, we have focused on Type II anodization for the medical (dental and orthopedic) application, the anodized surface was modified with gray color under alkaline electrolyte. The surface characteristics were analyzed with Focused Ion Beam (FIB), Scanning Electron Microscopy (SEM), surface roughness, Vickers hardness, three point bending test, biocompatibility, and corrosion (potentiodynamic) test. The Ti-6Al-4V alloy was used for specimen, the anodizing procedure was conducted in alkaline solution (NaOH based, pH>13). Applied voltage was range between 20 V to 40 V until the ampere to be zero. As results, the surface characteristics of anodic oxide layer were analyzed with SEM, the dissecting layer was fabricated with FIB method prior to analyze surface. The surface roughness was measured by arithmetic mean deviation of the roughness profile (Ra). The Vickers hardness was obtained with Vickers hardness tester, indentation was repeated for 5 times on each sample, and the three point bending property was verified by yield load values. In order to determine the corrosion resistance for the corrosion rate, the potentiodynamic test was performed for each specimen. The biological safety assessment was analyzed by cytotoxic and pyrogen test. Through FIB feature of anodic surfaces, the thickness of oxide layer was 1.1 um. The surface roughness, Vickers hardness, bending yield, and corrosion resistance of the anodized specimen were shown higher value than those of non-treated specimen. Also we could verify that there was no significant issues from cytotoxicity and pyrogen test.

  • PDF

Production and Characteristics of Lytic Enzyme against Streptococcus mutans Cell Wall from Alkalophilic Bacillus sp. 4830 (호알카리성 Bacillus sp. 4830이 생산하는 Streptococcus mutans 세포벽 분해효소의 분리와 특성)

  • Kim, Yun-Keun;Bai, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1143-1149
    • /
    • 2003
  • To elucidate a method of preventing dental caries, strains producing lytic enzymes were isolated and their characteristics were investigated. Among 5,00 alkalophilic strains isolated from soil, 22 strains showed lytic activity against Streptococcus mutans. Strain No. 4830, with the highest lytic activity, was selected for further study. Strain 4830 showed 94% sequence homology with the 16S rDNA sequence of Bacillus alcalophilus, but it was concluded to be different from Bacillus alcalophilus because of its biochemical characteristics. The strain was named Bacillus sp. 4830. The lytic enzyme from Bacillus sp. 4830 was purified by ethanol precipitation and CM-agarose column chromatography. The molecular weight of the lytic enzyme was determined to be 28 kDa by SDS-PAGE. The lytic enzyme was stable between pH 5.0 and pH 11 and up to $40^{\circ}C$. The optimal pH and temperature for the lytic activity was 9.0 and $50^{\circ}C$, respectively.

EFFECTS OF TITANIUM SURFACE COATING ON CERAMIC ADHESION (타이타늄 표면 코팅이 도재 결합에 미치는 영향)

  • Kim, Yeon-Mi;Kim, Hyun-Seung;Lee, Kwang-Min;Lee, Doh-Jae;Oh, Gye-Jeong;Lim, Hyun-Pil;Seo, Yoon-Jung;Park, Sang-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.5
    • /
    • pp.601-610
    • /
    • 2007
  • Statement of problem: The adhesion between titanium and ceramic is less optimal than conventional metal-ceramic bonding, due to reaction layer form on cast titanium surface during porcelain firing. Purpose: This study characterized the effect of titanium-ceramic adhesion after gold and TiN coating on cast and wrought titanium substrates. Material and method: Six groups of ASTM grade II commercially pure titanium and cast titanium specimens$(13mm{\times}13mm{\times}1mm)$ were prepared(n=8). The conventional Au-Pd-In alloy served as the control. All specimens were sandblasted with $110{\mu}m\;Al_2O_3$ particles and ultrasonically cleaned for 5min in deionized water and dried in air before porcelain firing. An ultra-low-fusing dental porcelain (Vita Titankeramik) was fused on titanium surfaces. Porcelain was debonded by a biaxial flexure test at a cross head speed of 0.25mm/min. The excellent titanium-ceramic adherence was exhibited by the presence of a dentin porcelain layer on the specimen surface after the biaxial flexure test. Area fraction of adherent porcelain (AFAP) was determined by SEM/EDS. Numerical results were statistically analyzed by one-way ANOVA and Student-Newman-Keuls test at ${\alpha}=0.05$. Results: The AFAP value of cast titanium was greatest in the group 2 with TiN coating, followed by group 1 with Au coating and the group 3 with $Al_2O_3$ sandblasting. Significant statistical difference was found between the group 1, 2 and the group 3 (p<.05). The AFAP value of wrought titanium was greatest in the group 5 with TiN coating, followed by the group 4 with Au coating and the group 6 with $Al_2O_3$ sandblasting. Conclusion: No significant difference was observed among the three groups (p>.05). The AFAP values of the cast titanium and the wrought titanium were similar. However the group treated with $Al_2O_3$ sandblasting showed significantly lower value (p<.05).

Surface Characteristics of Dental Casting Palladium Alloy for Replacement of Gold Alloy (금대체를 위한 치과주조용 파라듐 합금의 표면특성)

  • Park, Seon-Yeong;Hwang, In-Jo;Yu, Ji-Min;Park, Min-Gyu;Im, Sang-Gyu;Bae, Ho-Seong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.196-196
    • /
    • 2016
  • 치과나 기공소로부터 높은 원가로 인한 재료선택에 어려움을 겪고 있어 귀금속 금합금의 물성을 가질 수 있도록 하면서 가격급등으로 인한 문제 해결하기 위한 비귀금속 합금으로 대체가 필요하기에 이에 따른 연구가 이루어져 국산 제품의 상품화를 위해 파라듐을 이용하여 적합한 새로운 합금을 개발하는 것이 필요하다. 치과용 골드합금은 미국치과의사 협회의 구정에 의하면 1형부터 4형까지 분류하고 있으며 3형에 해당하는 강도와 기계적인 특성을 갖도록 파라듐으로 대체하는 연구가 진행중이거나 시판되고 있다. 따라서 본 연구에서는 2형, 3형 및 4형을 대체가능하도록 팔라듐을 기반으로 한 새로운 합금을 설계하고 합금의 성분원 소인 Au(1~5), Pd(20~25), Ag(70~75), In(1.5) 및 Zn(2)등으로 조성을 변화시켜 측량 후 합금을 제조하기 위하여 아르곤 분위기하의 진공아크용해로를 이용하여 용해하였다. 정량된 금속을 진공아크 용해로에 장입하고 용해는 균질한 합금이 되도록 최소한 6회 이상 용융을 실시하며 합금성분의 손실이 발행하지 않도록 보정을 하였다. 합금의 미세조직 관찰을 위하여 샘플을 고속 다이아몬드 정밀 절단기(Acculom-5, STRUERS, Denmark)를 이용하여 절단한 후 2000 grit의 Sic 연마지에서 단계적으로 $0.3{\mu}m$ 알루미나 분말까지 연마한 후 초음파 세척을 하였다. 준비한 시편은 KCN과 $(NH_4)_2S_2O_8$을 1:1로 혼합한 부식액으로 에칭한 후 OM과 SEM을 이용하여 조직을 관찰하였으며 각 샘플의 성분변화는 EDS 분석을 통해 확인하고 결정구조는 XRD를 사용하여 분석하였다. 경도시험은 비커스경도시험기를 이용하여 5kg의 하중을 30초간 작동시켜 압흔을 연결된 micron으로 평균값을 측정하였다. 각 시편의 부식거동은 POTENTIOSTAT(Model PARSTAT 2273, EG&G, USA)을 이용하여 구강 내환경화 유사한 $36.5{\pm}1^{\circ}C$의 0.9% NaCl에서 실시하였다. 인가전위는 -1500mV에서 1000mV까지 1.67 mV/min의 주사속도로 인가하여 시험을 수행하였으며 분극곡선으로부터 부식전위와 부식전류밀도 및 부동태영역의 전류밀도로 금속의 용출거동을 조사하였으며 부식이 끝난 시편은 FE-SEM과 EDS를 사용하여 조사하였다. 기계적인 특성은 Pd-Ag에 3wt%의 Au를 첨가한 합금이 Pd-Ag에 1.5wt%합금을 첨가한 경우에 비하여 기계적인 특성이 증가하고 내식성이 크게 증가하였다. 이들 합금에 Cu를 11wt%를 첨가한 경우는 비커스경도가 200이상으로 높게 나타났지만 내식성이 크게 감소하였다.

  • PDF

Effects of Coronal Thread Pitch in Scalloped Implant with 2 Different Connections on Loading Stress using 3 Dimensional Finite Element Analysis (연결부 형태가 다른 두 가지 scallop 임플란트에서 경부 나사선 피치가 응력 분포에 미치는 영향 : 삼차원적유한요소분석)

  • Choi, Kyung-Soo;Park, Seong-Hun;Lee, Jae-Hoon;Huh, Jung-Bo;Yun, Mi-Jung;Jeon, Young-Chan;Jeong, Chang-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.2
    • /
    • pp.111-118
    • /
    • 2013
  • Purpose of present study is to investigate the effects of thread pitch in coronal portion in scalloped implant with 2 different connections on loading stress using 3 dimensional finite element analysis. Scalloped implant with 4 different thread pitches (0.4mm, 0.5mm, 0.6, and 0.7mm) in the coronal part was modeled with 2 different implant-abutment connections. Platform matching connection had the same implant and abutment diameter so that they were in flush contact at the periphery while platform mismatching connection had smaller abutment diameter than implant so that their connection was made away from periphery of implant-bone interface. Occlusal loading of 100N force was applied vertically and 30 degree obliquely to all 8 models and the maximum von Mises bone stress was identified. Loading stress as highly concentrated in cortical bone. Platform mismatching scalloped implant with small thread pitch (0.4mm) model had consistently lowest maximum von Mises bone stress in vertical and oblique loads. Platform matching model had lowest maximum von Mises bone stress with 0.6mm thread pitch in vertical load and with 0.4mm thread pitch in oblique load. Platform mismatching connection had important roles in reducing maximum von Mises bone stress. Scalloped implant with smaller coronal thread pitch showed trend of reducing maximum von Mises bone stress under load.

Cyclic fatigue resistance, torsional resistance, and metallurgical characteristics of M3 Rotary and M3 Pro Gold NiTi files

  • Pedulla, Eugenio;Lo Savio, Fabio;La Rosa, Giusy Rita Maria;Miccoli, Gabriele;Bruno, Elena;Rapisarda, Silvia;Chang, Seok Woo;Rapisarda, Ernesto;La Rosa, Guido;Gambarini, Gianluca;Testarelli, Luca
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.2
    • /
    • pp.25.1-25.10
    • /
    • 2018
  • Objectives: To evaluate the mechanical properties and metallurgical characteristics of the M3 Rotary and M3 Pro Gold files (United Dental). Materials and Methods: One hundred and sixty new M3 Rotary and M3 Pro Gold files (sizes 20/0.04 and 25/0.04) were used. Torque and angle of rotation at failure (n = 20) were measured according to ISO 3630-1. Cyclic fatigue resistance was tested by measuring the number of cycles to failure in an artificial stainless steel canal ($60^{\circ}$ angle of curvature and a 5-mm radius). The metallurgical characteristics were investigated by differential scanning calorimetry. Data were analyzed using analysis of variance and the Student-Newman-Keuls test. Results: Comparing the same size of the 2 different instruments, cyclic fatigue resistance was significantly higher in the M3 Pro Gold files than in the M3 Rotary files (p < 0.001). No significant difference was observed between the files in the maximum torque load, while a significantly higher angular rotation to fracture was observed for M3 Pro Gold (p < 0.05). In the DSC analysis, the M3 Pro Gold files showed one prominent peak on the heating curve and 2 prominent peaks on the cooling curve. In contrast, the M3 Rotary files showed 1 small peak on the heating curve and 1 small peak on the cooling curve. Conclusions: The M3 Pro Gold files showed greater flexibility and angular rotation than the M3 Rotary files, without decrement of their torque resistance. The superior flexibility of M3 Pro Gold files can be attributed to their martensite phase.

Antibacterial and Antibiofilm Activities of Diospyros malabarica Stem Extract against Streptococcus mutans (Streptococcus mutans에 대한 인도감나무 줄기 추출물의 항균활성 및 생물막 형성 억제 효과)

  • Kim, Hye Soo;Lee, Sang Woo;Sydara, Kongmany;Cho, Soo Jeong
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.90-96
    • /
    • 2019
  • The objective of this study was to evaluate the potential of Diospyros malabarica stem extract, a natural materials, in oral health material. With this aim in mind, thin layer chromatography (TLC), TLC-bioautography, high-performance liquid chromatography (HPLC), electrospray ionization-mass spectrometry (ESI-MS), scanning electron microscopy (SEM), and real-time qPCR were performed. The antibacterial activity of D. malabarica stem extract against Streptococcus mutans KCTC3065 was confirmed in an n-hexane fraction with low polarity. The molecular weight of the antibacterial compound was estimated to be 188 by ESI-MS analysis. The inhibitory effects of the extract on biofilm formation and gene expression related to biofilm formation of S. mutans were determined by SEM and real-time PCR analysis. The extract inhibited the formation of S. mutans biofilms at D. malabarica stem extract concentrations of 1 mg/ml, as shown by SEM. The real-time PCR analysis showed that the expression of the gtfC gene, which is associated with biofilm formation, was significantly decreased in a dose-dependent manner. Based on the above results, it can be concluded that D. malabarica stem extracts, a natural materials, can be used in oral health products to suppress the formation of biofilms by inhibiting tooth adhesion of S. mutans, a causative agent of dental caries.

Synthesis of akermanite bioceramics by solid-state reaction and evaluation of its bioactivity (고상반응법에 의한 아커마나이트 분말의 합성 및 생체활성도 평가)

  • Go, Jaeeun;Lee, Jong Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.191-198
    • /
    • 2022
  • Zirconia and titanium alloys, which are mainly used for dental implant materials, have poor osseointegration and osteogenesis abilities due to their bioinertness with low bioactivity on surface. In order to improve their surface bioinertness, surface modification with a bioactive material is an easy and simple method. In this study, akermanite (Ca2MgSi2O7), a silicate-based bioceramic material with excellent bone bonding ability, was synthesized by a solid-state reaction and investigated its bioactivity from the analysis of surface dissolution and precipitation of hydroxyapatite particles in SBF solution. Calcium carbonate (CaCO3), magnesium carbonate (MgCO3), and silicon dioxide (SiO2) were used as starting materials. After homogeneous mixing of starting materials by ball milling and the drying of at oven, uniaxial pressing was performed to form a compacted disk, and then heat-treated at high temperature to induce the solid-state reaction to akermanite. Bioactivity of synthesized akermanite disk was evaluated with the reaction temperature from the immersion test in SBF solution. The higher the reaction temperature, the more pronounced the akermanite phase and the less the surface dissolution at particle surface. It resulted that synthesized akermanite particles had high bioactivity on particle surface, but it depended on reacted temperature and phase composition. Moderate dissolution occurred at particle surfaces and observed the new precipitated hydroxyapatite particles in synthetic akermanite with solid-state reaction at 1100℃.

The influence of occlusal loads on stress distribution of cervical composite resin restorations: A three-dimensional finite element study (교합력이 치경부 복합레진 수복물의 응력분포에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Park, Chan-Seok;Hur, Bock;Kim, Hyeon-Cheol;Kim, Kwang-Hoon;Son, Kwon;Park, Jeong-Kil
    • Proceedings of the KACD Conference
    • /
    • 2008.05a
    • /
    • pp.246-257
    • /
    • 2008
  • The purpose of this study was to investigate the influence of various occlusal loading sites and directions on the stress distribution of the cervical composite resin restorations of maxillary second premolar, using 3 dimensional (3D) finite element (FE) analysis. Extracted maxillary second premolar was scanned serially with Micro-CT (SkyScan1072; SkyScan, Aartselaar, Belgium). The 3D images were processed by 3D-DOCTOR (Able Software Co., Lexington, MA, USA). HyperMesh (Altair Engineering. Inc., Troy, USA) and ANSYS (Swanson Analysis Systems. Inc., Houston, USA) was used to mesh and analyze 3D FE model. Notch shaped cavity was filled with hybrid (Z100, 3M Dental Products, St. Paul, MN, USA) or flowable resin (Tetric Flow, Viva dent Ets., FL-9494-Schaan, Liechtenstein) and each restoration was simulated with adhesive layer thickness ($40{\mu}m$). A static load of 200 N was applied on the three points of the buccal incline of the palatal cusp and oriented in $20^{\circ}$ increments, from vertical (long axis of the tooth) to oblique $40^{\circ}$ direction towards the buccal. The maximum principal stresses in the occlusal and cervical cavosurface margin and vertical section of buccal surfaces of notch-shaped class V cavity were analyzed using ANSYS. As the angle of loading direction increased, tensile stress increased. Loading site had little effect on it. Under same loading condition. Tetric Flow showed relatively lower stress than Z100 overall, except both point angles. Loading direction and the elastic modulus of restorative material seem to be important factor on the cervical restoration.

  • PDF

The influence of occlusal loads on stress distribution of cervical composite resin restorations: A three-dimensional finite element study (교합력이 치경부 복합레진 수복물의 응력분포에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Park, Chan-Seok;Hur, Bock;Kim, Hyeon-Cheol;Kim, Kwang-Hoon;Son, Kwon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.3
    • /
    • pp.246-257
    • /
    • 2008
  • The purpose of this study was to investigate the influence of various occlusal loading sites and directions on the stress distribution of the cervical composite resin restorations of maxillary second premolar, using 3 dimensional (3D) finite element (FE) analysis. Extracted maxillary second premolar was scanned serially with Micro-CT (SkyScan1072; SkyScan, Aartselaar, Belgium). The 3D images were processed by 3D-DOCTOR (Able Software Co., Lexington, MA, USA). HyperMesh (Altair Engineering, Inc., Troy, USA) and ANSYS (Swanson Analysis Systems, Inc., Houston, USA) was used to mesh and analyze 3D FE model. Notch shaped cavity was filled with hybrid (Z100, 3M Dental Products, St. Paul, MN, USA) or flowable resin (Tetric Flow, Vivadent Ets., FL-9494-Schaan, Liechtenstein) and each restoration was simulated with adhesive layer thickness ($40{\mu}m$). A static load of 200 N was applied on the three points of the buccal incline of the palatal cusp and oriented in $20^{\circ}$ increments, from vertical (long axis of the tooth) to oblique $40^{\circ}$ direction towards the buccal. The maximum principal stresses in the occlusal and cervical cavosurface margin and vertical section of buccal surfaces of notch-shaped class V cavity were analyzed using ANSYS. As the angle of loading direction increased, tensile stress increased. Loading site had little effect on it. Under same loading condition, Tetric Flow showed relatively lower stress than Z100 overall, except both point angles. Loading direction and the elastic modulus of restorative material seem to be important factor on the cervical restoration.