• 제목/요약/키워드: Density-induced flow

검색결과 159건 처리시간 0.028초

Fatigue life prediction of horizontally curved thin walled box girder steel bridges

  • Nallasivam, K.;Talukdar, Sudip;Dutta, Anjan
    • Structural Engineering and Mechanics
    • /
    • 제28권4호
    • /
    • pp.387-410
    • /
    • 2008
  • The fatigue damage accumulation rates of horizontally curved thin walled box-girder bridge have been estimated from vehicle-induced dynamic stress history using rain flow cycle counting method in the time domain approach. The curved box-girder bridge has been numerically modeled using computationally efficient thin walled box-beam finite elements, which take into account the important structural actions like torsional warping, distortion and distortional warping in addition to the conventional displacement and rotational degrees of freedom. Vehicle model includes heave-pitch-roll degrees of freedom with longitudinal and transverse input to the wheels. The bridge deck unevenness, which is taken as inputs to the vehicle wheels, has been assumed to be a realization of homogeneous random process specified by a power spectral density (PSD) function. The linear damage accumulation theory has been applied to calculate fatigue life. The fatigue life estimated by cycle counting method in time domain has been compared with those found by estimating the PSD of response in frequency domain. The frequency domain method uses an analytical expression involving spectral moment characteristics of stress process. The effects of some of the important parameters on fatigue life of the curved box bridge have been studied.

고밀도 플라즈마 화학 증착 장치를 이용한 $TiB_2$ 박막 제조 (Deposition Of $TiB_2$ Films by High Density Plasma Assisted Chemical Vapor Deposition)

  • 이승훈;남경희;홍승찬;이정중
    • 한국표면공학회지
    • /
    • 제38권2호
    • /
    • pp.60-64
    • /
    • 2005
  • The ICP-CVD (inductively coupled plasma chemical vapor deposition) process was applied to the deposition of $TiB_2$ films. For plasma generation, 13.56 MHz r.f. power was supplied to 2-turn Cu coil placed inside chamber. And the gas mixture of $TiCl_4,\;BCl_3,\;H_2$ and Ar was used for $TiB_2$ deposition. $TiB_2$ films with high hardness (<40 GPa) were obtained at extremely low deposition temperature $(250^{\circ}C)$, and the films hardness increased with ICP power and gas flow ratio of $TiCl_4/BCl_3$. The film structure was changed from (100) preferred orientation to random orientation with increasing RF power. It is supposed that the enhanced hardness of films was caused by a strong Ti-B chemical bonding of stoichiometric $TiB_2$ films and film densification induced by high density plasma.

가상경계 격자 볼츠만 법을 이용한 채널 내 자유 낙하하는 2차원 원형 실린더의 운동 특성 (Numerical study on motion characteristics of a free falling two-dimensional circular cylinder in a channel using an Immersed Boundary - Lattice Boltzmann Method)

  • 정해권;하만영;윤현식;김성줄
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2489-2494
    • /
    • 2008
  • The two-dimensional circular cylinder freely falling in a channel has been simulated by using Immersed boundary - lattice Boltzmann method in order to analyze the characteristics of motion originated by the interaction between the fluid and the solid. The wide range of the solid/fluid density ratio has been considered to identify the effect of the solid/fluid density ratio on the motion characteristics such as the falling time, the terminal velocity and the trajectory in the vertical and horizontal directions. In addition, the effect of the gap between the cylinder and the wall on the motion of two-dimensional circular cylinder freely falling has been revealed by taking into account a various range of the gap size. The Reynolds number in terms of the terminal velocity is diminished as the cylinder becomes close to the wall at the initial dropping position, since the repulsive force induced between the cylinder and wall constrains the vertical motion. Quantitative information about the flow variables such as the pressure coefficient and vorticity on the cylinders is highlighted.

  • PDF

해안방조제가 조류 및 잔류흐름에 미치는 영향 (The Effects of Tidal Currents and Residual Flow on the Sea Dike)

  • 백중철;윤영호;신문섭
    • 한국수자원학회논문집
    • /
    • 제38권1호
    • /
    • pp.83-96
    • /
    • 2005
  • 해안매립이 해양의 동수력학, 환경 및 생태계에 미치는 영향을 분석하기 위하여 3차원 동수력학 수치해석을 실시하였다. 이 연구에서는 방조제 건설에 따른 조석, 바람 및 밀도변화 성분을 포함한 조류와 잔차류의 변화를 수치모의 하였다. $\sigma$-좌표로 변환된 지배방정식은 음해유한차분법을 이용하여 해석하였다. 수치모형은 조석의 4대 주요 구성성분인 M$_2$, S$_2$, $K_1$$O_1$의 조석표를 이용하여 검증하였다. 수치해석결과, 주로 조석 및 바람에 의한 잔차류의 변화가 큰 것으로 나타났다.

Cl--Channel Is Essential for LDL-induced Cell Proliferation via the Activation of Erk1/2 and PI3K/Akt and the Upregulation of Egr-1 in Human Aortic Smooth Muscle Cells

  • Heo, Kyung-Sun;Ryoo, Sung-Woo;Kim, Lila;Nam, Miyoung;Baek, Seung-Tae;Lee, Hyemi;Lee, Ah-Reum;Park, Song-Kyu;Park, Youngwoo;Myung, Chang-Seon;Kim, Dong-Uk;Hoe, Kwang-Lae
    • Molecules and Cells
    • /
    • 제26권5호
    • /
    • pp.468-473
    • /
    • 2008
  • Low-density lipoprotein (LDL) induces cell proliferation in human aortic smooth muscle cells (hAoSMCs), which may be involved in atherogenesis and intimal hyperplasia. Recent studies have demonstrated that $Cl^-$ channels are related to vessel cell proliferation induced by a variety of stimuli. In this study, we investigated a potential role of $Cl^-$ channels in the signaling pathway of LDL effects on hAoSMC proliferation with a focus on the activation of Erk1/2-PI3K/Akt and the subsequent upregulation of Egr-1. $Cl^-$ channel blockers, DIDS, but neither NPPB nor Furosemide, completely abolished the LDL-induced DNA synthesis and cell proliferation. Moreover, DIDS, but not NPPB, significantly decreased LDL-stimulated $Cl^-$ concentration, as judged by flow cytometry analysis using MQAE as a $Cl^-$-detection dye. DIDS pretreatment completely abolished the activation of Erk1/2 and PI3K/Akt in a dose-dependent manner that is the hallmark of LDL activation, as judged by Western blot and proliferation assays. Moreover, pretreatment with DIDS ($Cl^-$ channel blockers) but not LY294002 (PI3K inhibitors) completely abolished the LDL-induced upregulation of Egr-1 to the same extent as PD98059 (MEK inhibitors to inhibit Erk), as judged by Western blot and luciferase reporter assays. This is the first report, to our knowledge, that DIDS-sensitive $Cl^-$-channels play a key role in the LDL-induced cell proliferation of hAoSMCs via the activation of Erk1/2 and PI3K/Akt and the upregulation of Egr-1.

고정된 직교격자계를 이용한 파랑 중 전진하는 선박주위 유동의 수치시뮬레이션 (Numerical Simulation of the Flow around Advancing Ships in Regular Waves using a Fixed Rectilinear Grid System)

  • 정광열;이영길
    • 대한조선학회논문집
    • /
    • 제51권5호
    • /
    • pp.419-428
    • /
    • 2014
  • This paper presents a numerical simulation method for the flow around advancing ships in regular waves by using a rectilinear grid system. Because the grid lines do not consist with body surface in the rectilinear grid system, the body geometries are defined by the interaction points of those grid lines and the body surface. For the satisfaction of body boundary conditions, no-slip and divergence free conditions are imposed on the body surface and body boundary cells, respectively. Meanwhile, free surface is defined with the modified marker density method. The pressure on the free surface is determined to make the pressure gradient terms of the governing equations continuous, and the velocity around the free surface is calculated with the pressure on the free surface. To validate the present numerical method, a vortex induced vibration (VIV) phenomenon and flows around an advancing Wigley III ship model in various regular waves are simulated, and the results are compared with existing and corresponding research data. Also, to check the applicability to practical ship model, flows around KRISO Container Ship (KCS) model advancing in calm water are numerically simulated. On the simulations, the trim and the sinkage are set free to compare the running attitude with some other experimental data. Moreover, flows around the KCS model in regular waves are also simulated.

CE형 증기발생기 전열관에 대한 유체탄성 불안정성 해석 (Analysis of Fluid-elastic Instability In the CE-type Steam Generator Tube)

  • 박치용;유기완
    • 한국소음진동공학회논문집
    • /
    • 제12권4호
    • /
    • pp.261-271
    • /
    • 2002
  • The fluid-elastic instability analysis of the U-tube bundle inside the steam generator is very important not only for detailed design stage of the SG but also for the change of operating condition of the nuclear powerplant. However the calculation procedure for the fluid-elastic instability was so complicated that the consolidated computer program has not been developed until now. In this study, the numerical calculation procedure and the computer program to obtain the stability ratio were developed. The thermal-hydraulic data in the region of secondary side of steam generator was obtained from executing the ATHOS3 code. The distribution of the fluid density can be calculated by using the void fraction, enthalpy, and operating pressure. The effective mass distribution along the U-tube was required to calculate natural frequency and dynamic mode shape using the ANSYS ver. 5.6 code. Finally, stability ratios for selected tubes of the CE type steam generator were computed. We considered the YGN 3.4 nuclear powerplant as the model plant, and stability ratios were investigated at the flow exit region of the U-tube. From our results, stability ratios at the central and the outside region of the tube bundle are much higher than those of other region.

Real-Time Water Wave Simulation with Surface Advection based on Mass Conservancy

  • Kim, Dong-Young;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • 제4권2호
    • /
    • pp.7-12
    • /
    • 2008
  • In this paper, we present a real-time physical simulation model of water surfaces with a novel method to represent the water mass flow in full three dimensions. In a physical simulation model, the state of the water surfaces is represented by a set of physical values, including height, velocity, and the gradient. The evolution of the velocity field in previous works is handled by a velocity solver based on the Navier-Stokes equations, which occurs as a result of the unevenness of the velocity propagation. In this paper, we integrate the principle of the mass conservation in a fluid of equilateral density to upgrade the height field from the unevenness, which in mathematical terms can be represented by the divergence operator. Thus the model generates waves induced by horizontal velocity, offering a simulation that puts forces added in all direction into account when calculating the values for height and velocity for the next frame. Other effects such as reflection off the boundaries, and interactions with floating objects are involved in our method. The implementation of our method demonstrates to run with fast speed scalable to real-time rates even for large simulation domains. Therefore, our model is appropriate for a real-time and large scale water surface simulation into which the animator wishes to visualize the global fluid flow as a main emphasis.

HALE 무인기의 태양전지 열특성에 관한 해석적 연구 (A Numerical Study On Thermal Characteristics of HALE UAV Solar Arrays)

  • 송지한;남윤광
    • 한국추진공학회지
    • /
    • 제21권5호
    • /
    • pp.29-36
    • /
    • 2017
  • 본 연구에서는 수치해석을 통해 장기체공 무인기(HALE UAV)에 사용되는 태양전지에 대해 유동 및 열전달 해석을 수행하였다. 무인기가 운용되는 성층권에서는 강한 태양복사에너지가 유입되며, 자연대류에 의한 열전달이 감소하고 주위 유동에 의한 강제대류의 지배를 받는다. 이러한 환경에서의 태양전지 온도범위를 예측하기 위해 주익에 부착되어 있는 태양전지모듈을 대상으로 복합열전달 해석을 수행하였으며, 성층권 환경에서 시간에 따른 태양복사에너지, 비행속도, 밀도, 온도 등의 외기환경이 태양전지의 온도분포와 열전달 특성에 미치는 영향을 분석하였다.

수직환상주형내 Al-Cu합금의 응고과정 및 냉각속도의 조대편석에 대한 영향 (Solidification Process of an Al-Cu Alloy in a Vertical Annular Mold and Effects of Cooling Rate on Macrosegregation)

  • 유호선
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1818-1832
    • /
    • 1994
  • Transport process during solidification of an AI-CU alloy in a vertical annular mold of which inner wall is cooled is numerically simulated. A model which can take account of local density dependence on the solute concentration is established and incorperated in the analysis. Results show that thermally and solutally induced convections are developed in sequence, so that there is little interaction between them. Thermal convection effectively removes the initial superheat from the melt and vanishes as solidification proceeds from the cooling wall. On the other hand, solutal convection which is developed later over the meshy and the pure liquid regions leads to large-scale redistribution of the consituents. The degree of the initial superheating hardly affects overall solidification behavior except the early stage of the process, when the cooling rate is kept constant. Macrosegregation is reduced remarkably with increasing cooling rate, because not only the liquidus interface advances so quickly that time available for the solute transport is not enough, but also the interdendritic flow is strongly damped by rapid crystal growth within the mushy region.