• Title/Summary/Keyword: Density-induced flow

Search Result 159, Processing Time 0.025 seconds

A Study on the Interaction between Particles and Surrounding Fluid (입자와 주위유체와의 상호작용에 관한 연구)

  • ;T.Kurihara;H. Monji;G. Matsui
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.108-115
    • /
    • 2002
  • The fundamental mechanism of a dispersed two-phase flow was investigated. Experiments were carried out to understand how the particles behaves under the influence of the particle size, shape, metamorphoses (bubble) and buoyancy of a single particle which is ascending from the standstill water. Two CCD cameras were employed for image processing of the behavior of the particles and the surrounding flow, which was interpreted with the technique of correlation PIV (Particle Image Velocimetry) and PTV (Particle Tracking Veloci- metry), respectively The experimental results showed that the large density difference bet- ween a particle and water caused high relative velocity and induced zigzag motion of the particle. Furthermore, the turbulence intensity of a bubble was about twice the case of the spherical solid particle of similar diameter.

Investigation of Soot Formation in a D.I. Diesel Engine by Using Laser Induced Scattering and Laser Induced Incandescence

  • Lee, Ki-Hyung;Chung, Jae-Woo;Kim, Byung-Soo;Kim, Sang-Kwon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1169-1176
    • /
    • 2004
  • Soot has a great effect on the formation of PM (Particulate Matter) in D.I. (Direct Injection) Diesel engines. Soot in diesel flame is formed by incomplete combustion when the fuel atomization and mixture formation were poor. Therefore, the understanding of soot formation in a D.I. diesel engine is mandatory to reduce PM in exhaust gas. To investigate soot formation in diesel combustion, various measurements have been performed with laser diagnostics. In this study, the relative soot diameter and the relative number density in a DJ. engine was measured by using LIS (Laser Induced Scattering) and LII (Laser Induced Incandescence) methods simultaneously which are planar imaging techniques. And a visualization D.I. diesel engine was used to introduce a laser beam into the combustion chamber and investigate the diffusion flame characteristics. To find the optimal condition that reduces soot formation in diesel combustion, various injection timing and the swirl flow in the cylinder using the SCV (Swirl Control Valve) were applied. From this experiment, the effects of injection timing and swirl on soot formation were established. Effective reduction of soot formation is possible through the control of these two factors.

A Study on Flow Characteristic due to the Periodic Velocity Fluctuation of Upstream at Single Tube (단일 원관에서 전방류의 주기적인 속도 변동에 따른 유동 특성에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.613-618
    • /
    • 2019
  • The flow-induced vibration in a heat exchanger may cause the damage to piping. Therefore, it is necessary to establish the flow induced vibration characteristics for the structural stability of a heat exchanger. The purpose of this study was to compare the generation, development, and separation characteristics of a vortex around a circular tube with respect to time when the flow velocity of the inlet was fluctuating constantly and periodically. The time characteristics of lift and drag and the PSD characteristics were also investigated. In the case of a constant inlet flow velocity, the well-known Kalman vorticity distribution was shown. The vortex generation, growth, and separation were also observed alternately at the upper and lower sides of the tube. In the case of periodic inlet flow velocity, the vortex occurred simultaneously in the upper and lower sides of the tube. In the case of constant inlet flow velocity, the magnitude of the lift PSD was 500 times larger than that of drag. The frequency was 31.15 Hz and that of drag was doubled at 62.3 Hz. In case of a periodic inlet flow velocity, the PSD of the drag was approximately 500 times larger than that of lift. The frequency was 15.57 Hz, which was the same as the inlet-flow velocity frequency. In addition, the frequency of lift was 31.15 Hz, which was the same Karman vortex frequency.

Investigation of Outer Flow Noise Reduction of the Hydrophones Embedded in the Elastomer (탄성층에 삽입된 음향 하이드로폰의 외부 유입소음 영향 연구)

  • Park, Ji-hye;Lee, Jong-kil;Shin, Ku-kyun;Cho, Chi-yong
    • 대한공업교육학회지
    • /
    • v.33 no.2
    • /
    • pp.273-286
    • /
    • 2008
  • Underwater acoustic sensor array can detect acoustic signal in underwater and the sensor array can be mounted in each left, right or front side of the UUV(Unmanned Underwater Vehicle). The sensor array could be conformal array and effected turbulent boundary layer flow noise. Therefore, in this paper numerical simulations were performed to know the how the outer flow noise affect the hydrophone which embedded in the elastomer. Corcos wall pressure model was used as turbulent boundary layer flow noise and this model was applied to the frequency density function. Characteristics of transfer function according the kx wave number were simulated and design parameters were thickness of elastomer, density, and modulus of elasticity. Based on the simulation results when increasing the thickness of elastomer noise reduction was increased. This results can be applied to the design of conformal array of UUV.

The Development of System for Measuring Ion Generated from HVDC Overhead Transmission Line (초고압 직류 가공 송전선로에서 발생되는 이온 계측시스템 개발)

  • Ju, Mun-No;Yang, Kwang-Ho;Lee, Dong-Il;Shin, Koo-Yong;Lim, Jae-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2035-2040
    • /
    • 2008
  • The electrical discharge of high voltage direct current(HVDC) overhead transmission line generate audible noise, radio noise, electric field, ion current and induced voltage on the ground. These items are major factors to design environmentally friendly configuration of DC transmission line. Therefore, HVDC transmission lines must be designed to keep all these corona effects within acceptable levels. Several techniques have been used to assess interference caused by ions on HVDC overhead transmission line. In this study, to assess the ion characteristic of DC line, the ion current density and induced voltage caused by ion flow were measured by plate electrodes manufactured from a metal flat board and charged bodies, respectively. The charged body has two types of cylinder and cylindrical plate. From the results of calibration experiments, the sensitivity of flat electrode and charged body can be obtained. At present, the developed system is used to investigate the ion generation characteristics of Kochang DC ${\pm}500kV$ test line.

Numerical computation of pulsed laser ablation phenomena by thermal mechanisms (열적 메커니즘에 의한 펄스레이저 어블레이션 현상의 수치계산)

  • Oh, Bu-Kuk;Kim, Dong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1572-1577
    • /
    • 2003
  • High-power pulsed laser ablation under atmospheric pressure is studied utilizing numerical and experimental methods with emphasis on recondensation ratio, and the dynamics of the laser induced vapor flow. In the numerical calculation, the temperature pressure, density and vaporization flux on a solid substrate are first obtained by a heat-transfer computation code based on the enthalpy method, and then the plume dynamics is calculated by using a commercial CFD package. To confirm the computation results, the probe beam deflection technique was utilized for measuring the propagation of a laser induced shock wave. Discontinuities of properties and velocity over the Knudsen layer were investigated. Related with the analysis of the jump condition, the effect of the recondesation ratio on the plume dynamics was examined by comparing the pressure, density, and mass fraction of ablated aluminum vapor. To consider the effect of mass transfer between the ablation plume and air, unlike the most previous investigations, the equation of species conservation is simultaneously solved with the Euler equations. Therefore the numerical model computes not only the propagation of the shock front but also the distribution of the aluminum vapor. To our knowledge, this is the first work that employed a commercial CFD code in the calculation of pulsed ablation phenomena.

  • PDF

A Study on the Riser Fatigue Analysis Using a Quarter-modal Spectrum (사봉형 스펙트럼을 이용한 라이저 피로해석 연구)

  • Kim, Sang Woo;Lee, Seung Jae;Choi, Sol Mi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.514-520
    • /
    • 2016
  • Oil and gas production riser systems need to be designed considering a wide band quarter-modal analysis which contains low-, wave-, VIV(Vortex induced vibration) frequencies. The VIV can be separated into cross-flow(CF) and in-line(IL) components. In this study, the various idealized tri- and quarter-modal spectra are suggested to analyze fatigue damage on the production riser system. In order to evaluate the fatigue damage increment caused by the IL's motion, tri- and quarter-modal spectral fatigue damages are calculated in time domain. And the fatigue damage calculated from two different modal spectra are compared quantitatively. Then the suitability of existent wide band fatigue damage models for quarter modal spectrum was evaluated by comparison of frequency domain calculation and time domain calculation. The result show that although spectral density of IL motion is not remarkable in quantity, the effect on the fatigue damage is significant and existent fatigue damage models are not adequately estimating damage by quarter-modal spectra.

The CFD Analysis for the Fatigue Life Evaluation of HRSG Structure (배열회수 보일러 구조물의 피로수명 평가를 위한 유동해석)

  • Kim, Jinbeom;Kim, Chulho
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.7-17
    • /
    • 2020
  • Heat recovery steam generator(HRSG) generate steam using the high-temperature exhaust energy of gas turbines. Structures of HRSG are damaged by flow induced vibration of flue gas in some cases. In order to evaluate fatigue life to predict damage to a structure, a vibration analysis caused from flue gas should be used to derive the Power Spectral Density(PSD). However, it is very difficult to experimentally derive the vibrations generated by the exhaust gas form of gas turbines, which is very fast and complex. It was able to establish a way to identify vibration characteristics depending on the location of the structure by using high computing resources, large eddy simulation (LES). Random vibration analysis through these vibration characteristics(PSD) can evaluate the fatigue life of a structure.

Characteristics of Amorphous Silicon Gate Etching in Cl2/HBr/O2 High Density Plasma (Cl2/HBr/O2 고밀도 플라즈마에서 비정질 실리콘 게이트 식각공정 특성)

  • Lee, Won Gyu
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.79-83
    • /
    • 2009
  • In this study, the characteristics of amorphous silicon etching for the formation of gate electrodes have been evaluated at the variation of several process parameters. When total flow rates composed of $Cl_2/HBr/O_2$ gas mixtures increased, the etch rate of amorphous silicon layer increased, but critical dimension (CD) bias was not notably changed regardless of total flow rate. As the amount of HBr in the mixture gas became larger, amorphous silicon etch rate was reduced by the low reactivity of Br species. In the case of increasing oxygen flow rate, etch selectivity was increased due to the reduction of oxide etch rate, enhancing the stability of silicon gate etching process. However, gate electrodes became more sloped according to the increase of oxygen flow rate. Higher source power induced the increase of amorphous silicon etch rate and CD bias, and higher bias power had a tendency to increase the etch rate of amorphous silicon and oxide.

Synthesis of arsenic adsorbent using graft polymerization

  • SEKO Noriaki;TAMADA Hasao
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.11a
    • /
    • pp.199-203
    • /
    • 2004
  • Fibrous arsenic (As) adsorbent was synthesized by loading zirconium (Zr) on fibrous phosphoric adsorbent that was directly synthesized by radiation-induced graft polymerization of 2-hydroxyethyl methacrylate phosphoric acid on polyethylene-coated polypropylene nonwoven fabric. Zirconium reacted with phosphoric acid grafted in the polyethylene layer. Zirconium density of the resulting adsorbent was 4.1 mmol/g. The breakthrough curve of As(V) adsorption was independent of the flow rate up to $1300\;h^{-1}$ in space velocity. The total capacity of As(V) was 2.0 mmol/g-adsorbent at pH of 2. The adsorbed Zr(IV) could be evaluated by 0.4 M sodium hydroxide solution because negligible Zr(IV) could be found in the eluted solution.

  • PDF