• Title/Summary/Keyword: Density-based Clustering

Search Result 167, Processing Time 0.025 seconds

A Clustering Scheme for Discovering Congested Routes on Road Networks

  • Li, He;Bok, Kyoung Soo;Lim, Jong Tae;Lee, Byoung Yup;Yoo, Jae Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1836-1842
    • /
    • 2015
  • On road networks, the clustering of moving objects is important for traffic monitoring and routes recommendation. The existing schemes find out density route by considering the number of vehicles in a road segment. Since they don’t consider the features of each road segment such as width, length, and directions in a road network, the results are not correct in some real road networks. To overcome such problems, we propose a clustering method for congested routes discovering from the trajectories of moving objects on road networks. The proposed scheme can be divided into three steps. First, it divides each road network into segments with different width, length, and directions. Second, the congested road segments are detected through analyzing the trajectories of moving objects on the road network. The saturation degree of each road segment and the average moving speed of vehicles in a road segment are computed to detect the congested road segments. Finally, we compute the final congested routes by using a clustering scheme. The experimental results showed that the proposed scheme can efficiently discover the congested routes in different directions of the roads.

Dynamic-size Multi-hop Clustering Mechanism in Sensor Networks (센서 네트워크에서의 동적 크기 다중홉 클러스터링 방법)

  • Lim, Yu-Jin;Ahn, Sang-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.12C no.6 s.102
    • /
    • pp.875-880
    • /
    • 2005
  • One of the most important issues in the sensor network with resource-constrained sensor nodes is prolonging the network lifetime by efficiently utilizing the given energy of nodes. The most representative mechanism to achieve a long-lived network is the clustering mechanism. In this paper, we propose a new dynamic-size multi-hop clustering mechanism in which the burden of a node acting as a cluster head(CH) is balanced regardless of the density of nodes in a sensor network by adjusting the size of a cluster based on the information about the communication load and the residual energy of the node and its neighboring nodes. We show that our proposed scheme outperforms other single-hop or fixed-size multi-hop clustering mechanisms by carrying out simulations.

Clustering based Routing Algorithm for Efficient Emergency Messages Transmission in VANET (차량 통신 네트워크에서 효율적인 긴급 메시지 전파를 위한 클러스터링 기반의 라우팅 알고리즘)

  • Kim, Jun-Su;Ryu, Min-Woo;Cha, Si-Ho;Lee, Jong-Eon;Cho, Kuk-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3672-3679
    • /
    • 2012
  • Vehicle Ad hoc Network (VANET) is next-generation network technology to provide various services using V2V (Vehicle-to-Vehicle) and V2I (Vehicle-to-Infrastructure). In VANET, many researchers proposed various studies for the safety of drivers. In particular, using the emergency message to increase the efficiency of traffic safety have been actively studied. In order to efficiently transmit to moving vehicle, to send a quick message to as many nodes is very important via broadcasting belong to communication range of vehicle nodes. However, existing studies have suggested a message for transmission to the communication node through indiscriminate broadcasting and broadcast storm problems, thereby decreasing the overall performance has caused the problem. In addition, theses problems has decreasing performance of overall network in various form of road and high density of vehicle node as urban area. Therefore, this paper proposed Clustering based Routing Algorithm (CBRA) to efficiently transmit emergency message in high density of vehicle as urban area. The CBRA managed moving vehicle via clustering when vehicle transmit emergency messages. In addition, we resolve linkage problem between vehicles according to various form of road. The CBRA resolve link brokage problem according to various form of road as urban using clustering. In addition, we resolve broadcasting storm problem and improving efficacy using selection flooding method. simulation results using ns-2 revealed that the proposed CBRA performs much better than the existing routing protocols.

Noise resistant density based Fuzzy C-means Clustering Algorithm (노이즈에 강한 밀도를 이용한 Fuzzy C-means 클러스터링 알고리즘)

  • Go, Jeong-Won;Choe, Byeong-In;Lee, Jeong-Hun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.211-214
    • /
    • 2006
  • Fuzzy C-Means(FCM) 알고리즘은 probabilitic 멤버쉽을 사용하는 클러스터링 방법으로서 널리 쓰이고 있다. 하지만 이 방법은 노이즈에 대하여 민감한 성질을 가진다는 단점이 있다. 따라서 본 논문에서는 이러한 노이즈에 민감한 성질을 보완하기 위해서 데이터의 밀도추정을 이용하여 새로운 FCM 알고리즘을 제안한다. 본 논문에서 제안된 알고리즘은 FCM과 비슷한 성능의 클러스터링 수행이 가능하며, 노이즈가 포함된 데이터에서는 FCM보다 더 나은 성능을 보여준다.

  • PDF

ASVMRT: Materialized View Selection Algorithm in Data Warehouse

  • Yang, Jin-Hyuk;Chung, In-Jeong
    • Journal of Information Processing Systems
    • /
    • v.2 no.2
    • /
    • pp.67-75
    • /
    • 2006
  • In order to acquire a precise and quick response to an analytical query, proper selection of the views to materialize in the data warehouse is crucial. In traditional view selection algorithms, all relations are considered for selection as materialized views. However, materializing all relations rather than a part results in much worse performance in terms of time and space costs. Therefore, we present an improved algorithm for selection of views to materialize using the clustering method to overcome the problem resulting from conventional view selection algorithms. In the presented algorithm, ASVMRT (Algorithm for Selection of Views to Materialize using Reduced Table), we first generate reduced tables in the data warehouse using clustering based on attribute-values density, and then we consider the combination of reduced tables as materialized views instead of a combination of the original base relations. For the justification of the proposed algorithm, we reveal the experimental results in which both time and space costs are approximately 1.8 times better than conventional algorithms.

Automaticfor age-related pathological periventricular white matter changes (WMC) using k-means clustering and morphological features on T2-weighted and proton density (PD) MR images

  • 조익환;송인찬;오정수;장기현;정동석
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.34-34
    • /
    • 2003
  • Age-related WMCs frequently appear in older subjects and are known to be associated with cognitive impairment and brain pathologies such as Alzheimer's disease and stroke. However, it is difficult to detect WMC correctly by using only intensity-based clustering scheme because the intensity levels of WC are similar to those of gray matter(GM). In this paper, we aimed to develop a fast and accurate scheme to detect and segment periventricular WMCs by using both k-means clustering method and morphological features.

  • PDF

An Improved Resampling Technique using Particle Density Information in FastSLAM (FastSLAM 에서 파티클의 밀도 정보를 사용하는 향상된 Resampling 기법)

  • Woo, Jong-Suk;Choi, Myoung-Hwan;Lee, Beom-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.619-625
    • /
    • 2009
  • FastSLAM which uses the Rao-Blackwellized particle filter is one of the famous solutions to SLAM (Simultaneous Localization and Mapping) problem that estimates concurrently a robot's pose and surrounding environment. However, the particle depletion problem arises from the loss of the particle diversity in the resampling process of FastSLAM. Then, the performance of FastSLAM degenerates over the time. In this work, DIR (Density Information-based Resampling) technique is proposed to solve the particle depletion problem. First, the cluster is constructed based on the density of each particle, and the density of each cluster is computed. After that, the number of particles to be reserved in each cluster is determined using a linear method based on the distance between the highest density cluster and each cluster. Finally, the resampling process is performed by rejecting the particles which are not selected to be reserved in each cluster. The performance of the DIR proposed to solve the particle depletion problem in FastSLAM was verified in computer simulations, which significantly reduced both the RMS position error and the feature error.

A New Traffic Congestion Detection and Quantification Method Based on Comprehensive Fuzzy Assessment in VANET

  • Rui, Lanlan;Zhang, Yao;Huang, Haoqiu;Qiu, Xuesong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.41-60
    • /
    • 2018
  • Recently, road traffic congestion is becoming a serious urban phenomenon, leading to massive adverse impacts on the ecology and economy. Therefore, solving this problem has drawn public attention throughout the world. One new promising solution is to take full advantage of vehicular ad hoc networks (VANETs). In this study, we propose a new traffic congestion detection and quantification method based on vehicle clustering and fuzzy assessment in VANET environment. To enhance real-time performance, this method collects traffic information by vehicle clustering. The average speed, road density, and average stop delay are selected as the characteristic parameters for traffic state identification. We use a comprehensive fuzzy assessment based on the three indicators to determine the road congestion condition. Simulation results show that the proposed method can precisely reflect the road condition and is more accurate and stable compared to existing algorithms.

Ant Colony Hierarchical Cluster Analysis (개미 군락 시스템을 이용한 계층적 클러스터 분석)

  • Kang, Mun-Su;Choi, Young-Sik
    • Journal of Internet Computing and Services
    • /
    • v.15 no.5
    • /
    • pp.95-105
    • /
    • 2014
  • In this paper, we present a novel ant-based hierarchical clustering algorithm, where ants repeatedly hop from one node to another over a weighted directed graph of k-nearest neighborhood obtained from a given dataset. We introduce a notion of node pheromone, which is the summation of amount of pheromone on incoming arcs to a node. The node pheromone can be regarded as a relative density measure in a local region. After a finite number of ants' hopping, we remove nodes with a small amount of node pheromone from the directed graph, and obtain a group of strongly connected components as clusters. We iteratively do this removing process from a low value of threshold to a high value, yielding a hierarchy of clusters. We demonstrate the performance of the proposed algorithm with synthetic and real data sets, comparing with traditional clustering methods. Experimental results show the superiority of the proposed method to the traditional methods.

Multi-Objective Genetic Algorithm based on Multi-Robot Positions for Scheduling Problems (스케줄링 문제를 위한 멀티로봇 위치 기반 다목적 유전 알고리즘)

  • Choi, Jong Hoon;Kim, Je Seok;Jeong, Jin Han;Kim, Jung Min;Park, Jahng Hyon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.689-696
    • /
    • 2014
  • This paper presents a scheduling problem for a high-density robotic workcell using multi-objective genetic algorithm. We propose a new algorithm based on NSGA-II(Non-dominated Sorting Algorithm-II) which is the most popular algorithm to solve multi-objective optimization problems. To solve the problem efficiently, the proposed algorithm divides the problem into two processes: clustering and scheduling. In clustering process, we focus on multi-robot positions because they are fixed in manufacturing system and have a great effect on task distribution. We test the algorithm by changing multi-robot positions and compare it to previous work. Test results shows that the proposed algorithm is effective under various conditions.