• 제목/요약/키워드: Density-based Clustering

검색결과 167건 처리시간 0.027초

다광원 문제를 위한 광원 기여도 기반의 중요도 샘플링 (Light Contribution Based Importance Sampling for the Many-Light Problem)

  • 김효원;기현우;오경수
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (B)
    • /
    • pp.240-245
    • /
    • 2008
  • 컴퓨터 그래픽스에서 많은 광원들을 포함하는 장면을 사실적으로 렌더링하기 위해서는, 많은 양의 조명 계산을 수행해야 한다. 다수의 광원들로부터 빠르게 조명 계산을 하기 위해 많이 사용되는 기법 중에 몬테 카를로(Monte Carlo) 기법이 있다. 본 논문은 이러한 몬테 카를로(Monte Carlo) 기법을 기반으로, 다수의 광원들을 효과적으로 샘플링 할 수 있는 새로운 중요도 샘플링 기법을 제안한다. 제안된 기법의 두 가지 핵심 아이디어는 첫째, 장면 내에 다수의 광원이 존재하여도 어떤 특정 지역에 많은 영향을 주는 광원은 일부인 경우가 많다는 점이고 두 번째는 공간 일관성(spatial coherence)이 낮거나 그림자 경계 지역에 위치한 픽셀들은 영향을 받는 주요 광원이 서로 다르다는 점이다. 제안된 기법은 이러한 관찰에 착안하여 특정 지역에 광원이 기여하는 정도를 평가하고 이에 비례하게 확률 밀도 함수(PDF: Probability Density Function)를 결정하는 방법을 제안한다. 이를 위하여 이미지 공간상에서 픽셀들을 클러스터링(clustering)하고 클러스터 구조를 기반으로 대표 샘플을 선정한다. 선정된 대표 샘플들로부터 광원들의 기여도를 평가하고 이를 바탕으로 클러스터 단위의 확률 밀도 함수를 결정하여 최종 렌더링을 수행한다. 본 논문이 제안하는 샘플링 기법을 적용했을 때 전통적인 샘플링 방식과 비교하여 같은 샘플링 개수에서 노이즈(noise)가 적게 발생하는 좋은 화질을 얻을 수 있었다. 제안된 기법은 다수의 조명과 다양한 재질, 복잡한 가려짐이 존재하는 장면을 효과적으로 표현할 수 있다.

  • PDF

다차원 색인을 이용한 밀도 기반 클러스터링의 근사적 접근 방법 (An Approximate Approach for Density-Based Clustering Using Multidimensional Indexes)

  • 황재준;문양세;황규영;장주현;김진호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.37-39
    • /
    • 2005
  • 본 논문에서는 기존의 밀도 기반 전지 클러스터링 알고리즘의 성능을 개선한 밀도 기반 클러스터링의 근사적 접근법을 제안한다. 기존의 밀도 기반 전지 알고리즘은 다차원 색인의 많은 검색 공간을 빠르게 전지하면서도 원하는 클러스터를 정확히 찾아내는 특징을 가지고 있다. 그러나 기존 알고리즘은 전지를 위한 한계 값 설정을 위하여 단말 영역들의 밀도 값을 사용함으로써, 내부 영역에 속한 단말 영역들 간의 밀도 편차가 큰 경우 전지 여부에 대한 판별이 빨리 이루어지지 않는다. 또한, 최악의 경우에는 모든 단말 페이지를 검색하여야 하고, 이에 따라 성능이 저하될 수 있다. 반면에 제안하는 근사적 접근법에서는 한계 값 설정을 위해 단말 영역이 아닌 내부 영역의 밀도 값을 사용한다. 일반적으로, 내부 영역들 간의 밀도 편차는 단말 영역들 간의 밀도 편차보다 크지 않으므로, 근사 밀도 기반 전지 알고리즘에서는 더욱 많은 검색 공간의 전지 여부의 빨리 판별할 수 있게 된다. 성능 평가 실험을 수행한 결과, 제안한 알고리즘은 기존의 알고리즘과 비교하여 정확성 측면에서는 큰 차이가 없는 반면 수행 시간 측면에서는 최대 $17\%$의 성능 향상 효과가 있는 것으로 나타났다.

  • PDF

New Perspectives in Pediatric Nonalcoholic Fatty Liver Disease: Epidemiology, Genetics, Diagnosis, and Natural History

  • Ko, Jae Sung
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제22권6호
    • /
    • pp.501-510
    • /
    • 2019
  • Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in children. The global prevalence of pediatric NAFLD from general populations is 7.6%. In obese children, the prevalence is higher in Asia. NAFLD has a strong heritable component based on ethnic difference in the prevalence and clustering within families. Genetic polymorphisms of patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily member 2, and glucokinase regulatory protein (GCKR) are associated with the risk of NAFLD in children. Variants of PNPLA3 and GCKR are more common in Asians. Alterations of the gut microbiome might contribute to the pathogenesis of NAFLD. High fructose intake increases the risk of NAFLD. Liver fibrosis is a poor prognostic factor for disease progression to cirrhosis. Magnetic resonance spectroscopy and magnetic resonance proton density fat fraction are more accurate for steatosis quantification than ultrasound. Noninvasive imaging methods to assess liver fibrosis, such as transient elastography, shear-wave elastography, and magnetic resonance elastography are useful in predicting advanced fibrosis, but they need further validation. Longitudinal follow-up studies into adulthood are needed to better understand the natural history of pediatric NAFLD.

Effect of Korean Red Ginseng on metabolic syndrome

  • Yoon, Sang Jun;Kim, Seul Ki;Lee, Na Young;Choi, Ye Rin;Kim, Hyeong Seob;Gupta, Haripriya;Youn, Gi Soo;Sung, Hotaik;Shin, Min Jea;Suk, Ki Tae
    • Journal of Ginseng Research
    • /
    • 제45권3호
    • /
    • pp.380-389
    • /
    • 2021
  • Metabolic syndrome (MS) refers to a clustering of at least three of the following medical conditions: high blood pressure, abdominal obesity, hyperglycemia, low high-density lipoprotein level, and high serum triglycerides. MS is related to a wide range of diseases which includes obesity, diabetes, insulin resistance, cardiovascular disease, dyslipidemia, or non-alcoholic fatty liver disease. There remains an ongoing need for improved treatment strategies for MS. The most important risk factors are dietary pattern, genetics, old age, lack of exercise, disrupted biology, medication usage, and excessive alcohol consumption, but pathophysiology of MS has not been completely identified. Korean Red Ginseng (KRG) refers to steamed/dried ginseng, traditionally associated with beneficial effects such as anti-inflammation, anti-fatigue, anti-obesity, anti-oxidant, and anti-cancer effects. KRG has been often used in traditional medicine to treat multiple metabolic conditions. This paper summarizes the effects of KRG in MS and related diseases such as obesity, cardiovascular disease, insulin resistance, diabetes, dyslipidemia, or non-alcoholic fatty liver disease based on experimental research and clinical studies.

다계층 밀도기반 군집화 기법 (Multi-hierarchical Density-based Clustering Method)

  • 신동문;정석호;이경민;이동규;손교용;류근호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 추계학술발표대회
    • /
    • pp.797-798
    • /
    • 2009
  • 군집화는 대용량의 데이터로부터 유용한 정보를 추출하는 데에 적합한 데이터마이닝 기법들 중 하나이다. 군집화 기법은 주어진 데이터그룹 내에서 사전정보 없이 의미있는 지식을 발견할 수 있으므로 큰 어려움이 없이 실제 응용분야에 적용할 수 있다. 또한, 대용량 데이터를 다룰 때에 개별적인 데이터에 대한 접근 횟수를 줄이고, 알고리즘이 다루어야 할 데이터 구조의 크기를 줄일 수 있다. 본 논문에서는 밀도-기반 군집화 기법을 기반으로 하는 새로운 군집화 기법을 제안한다. 우리가 제안하는 군집화 기법은 반복적인 군집화 과정을 통하여 군집 내 주변 잡음을 제거하고 더 세밀하게 집단을 세분화하는 것이 가능하다. 또한, 군집을 표현하는 데에 계층구조로 나타내어 각 군집의 상관관계를 파악하는 데에 유리하다. 본 논문에서 제안하는 군집화 기법을 통하여 다양한 밀도를 가진 군집들을 효과적으로 분류할 수 있을 거라고 기대된다.

유의어 사전 기반 환경기술 검색 시스템 설계 (Design of environmental technology search system using synonym dictionary)

  • ;;구영현;유성준
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.582-586
    • /
    • 2020
  • 국가기후기술정보시스템은 국내 환경기술과 국외의 수요기술 정보를 제공하는 검색 시스템이다. 그러나 기존의 시스템은 유사한 뜻을 가진 단일 단어와 복수 단어들을 모두 식별하지 못하기에 유의어를 입력했을 경우 검색 결과가 다르다. 이런 문제점을 해결하기 위해 본 연구에서는 유의어 사전을 기반으로한 환경기술 검색 시스템을 제안한다. 이 시스템은 Word2vec 모델과 HDBSCAN(Hierarchical Density-Based Spatial Clustering of Application with Noise) 알고리즘을 이용해 유의어 사전을 구축한다. Word2vec 모델을 이용해 한국어와 영어 위키백과 코퍼스에 대해 형태소 분석을 진행한 후 단일 단어와 복수 단어를 포함한 단어를 추출하고 벡터화를 진행한다. 그 다음 HDBSCAN 알고리즘을 이용해 벡터화된 단어를 군집화 해주고 유의어를 추출한다. 기존의 Word2vec 모델이 모든 단어 간의 거리를 계산하고 유의어를 추출하는 과정과 대비하면 시간이 단축되는 역할을 한다. 추출한 유의어를 통합해 유의어 사전을 구축한다. 국가기후기술정보시스템에서 제공하는 국내외 기술정보, 기술정보 키워드와 구축한 유의어 사전을 Multi-filter를 제공하는 Elasticsearch에 적용해 최종적으로 유의어를 식별할 수 있는 환경기술 검색 시스템을 제안한다.

  • PDF

Detecting the Baryon Acoustic Oscillations in the N-point Spatial Statistics of SDSS Galaxies

  • Hwang, Se Yeon;Kim, Sumi;Sabiu, Cristiano G.;Park, In Kyu
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.72.3-73
    • /
    • 2021
  • Baryon Acoustic Oscillations (BAO) are caused by acoustic density waves in the early universe and act as a standard ruler in the clustering pattern of galaxies in the late Universe. Measuring the BAO feature in the 2-point correlation function of a sample of galaxies allows us to estimate cosmological distances to the galaxies mean redshift, , which is important for testing and constraining the cosmology model. The BAO feature is also expected to appear in the higher order statistics. In this work we measure the generalized spatial N-point point correlation functions up to 4th order. We made measurements of the 2, 3, and 4-point correlation functions in the SDSS-III DR12 CMASS data, comprising of 777,202 galaxies. The errors and covariances matrices were estimated from 500 mock catalogues. We created a theoretical model for these statistics by measuring the N-point functions in halo catalogues produced by the approximate Lagrangian perturbation theory based simulation code, PINOCCHIO. We created simulations using initial conditions with and without the BAO feature. We find that the BAO is detected to high significance up to the 4-point correlation function.

  • PDF

커피전문점 생존 및 폐업 분포의 군집 유형별 생멸 특성 (Locational Characteristics of Survived and Closed Coffee Shops by Spatial Cluster Type)

  • 박소현;어정민;이금숙
    • 한국경제지리학회지
    • /
    • 제23권4호
    • /
    • pp.408-424
    • /
    • 2020
  • 본 연구는 커피전문점 소재지별 지가 속성을 토대로 생존하여 영업 중인 커피전문점과 폐업한 커피전문점을 대상으로 공간 군집화를 시도하고, 군집 유형별 토지 특성(지가 및 필지 정보), 교통 요인(물리적 접근성)과 점포 속성(프랜차이즈 정보, 소재지별 동종업종의 개·폐업 경험), 공간 밀집도(커널 밀도 추정) 등 다양한 입지 특성을 통해 커피전문점의 생멸 분포에서 나타나는 특징을 파악한다. 이를 위해 영업 중 및 폐업한 커피전문점의 공간 군집은 일반적 입지분포형, 주거지역의 상업화형, 상업중심지 입지형 등으로 유형 구분하고, 군집 유형별 입지 특성을 비교 분석한다. 군집 결과, 영업 중 및 폐업한 커피전문점의 입지는 같은 유형으로 분류되더라도 서로 다른 공간 분포 양상을 나타내고, 입지 유형이 달라도 특정 핫스폿에서는 모두 높은 밀집도를 나타낸다. 본 연구의 분석 결과는 커피전문점 창업을 비롯해 지역별 상권정보를 파악하는데 기초자료로 제공될 수 있다.

RFID 태그에 기반한 이동 로봇의 몬테카를로 위치추정 (Monte Carlo Localization for Mobile Robots Under REID Tag Infrastructures)

  • 서대성;이호길;김홍석;양광웅;원대희
    • 제어로봇시스템학회논문지
    • /
    • 제12궈1호
    • /
    • pp.47-53
    • /
    • 2006
  • Localization is a essential technology for mobile robot to work well. Until now expensive sensors such as laser sensors have been used for mobile robot localization. We suggest RFID tag based localization system. RFID tag devices, antennas and tags are cheap and will be cheaper in the future. The RFID tag system is one of the most important elements in the ubiquitous system and RFID tag will be attached to all sorts of goods. Then, we can use this tags for mobile robot localization without additional costs. So, in this paper, the smart floor using passive RFID tags is proposed and, passive RFID tags are mainly used for identifying mobile robot's location and pose in the smart floor. We discuss a number of challenges related to this approach, such as tag distribution (density and structure), typing and clustering. When a mobile robot localizes in this smart floor, the localization error mainly results from the sensing range of the RFID reader, because the reader just ran know whether a tag is in the sensing range of the sensor. So, in this paper, we suggest two algorithms to reduce this error. We apply the particle filter based Monte Carlo localization algorithm to reduce the localization error. And with simulations and experiments, we show the possibility of our particle filter based Monte Carlo localization in the RFID tag based localization system.

사회연결망분석과 인공신경망을 이용한 추천시스템 성능 예측 (Predicting the Performance of Recommender Systems through Social Network Analysis and Artificial Neural Network)

  • 조윤호;김인환
    • 지능정보연구
    • /
    • 제16권4호
    • /
    • pp.159-172
    • /
    • 2010
  • 협업필터링 추천은 다양한 분야에서 활용되고 있지만 트랜잭션 데이터의 성격에 따라 추천 성능에 현저한 차이를 보이고 있다. 기존 연구에서는 이러한 추천 성능의 차이가 나타나는 이유에 대한 설명을 구체적으로 제시하지 못하고 있고 이에 따라 추천 성능의 예측 또한 연구된 바가 없다. 본 연구는 사회네트워크분석과 인공신경망 모형을 이용하여 협업필터링 추천시스템의 성능을 예측하고자 한다. 본 연구의 목적을 달성하기 위해 국내 백화점의 트랜잭션 데이터를 기반으로 형성되는 고객간 사회 네트워크의 구조적 지표를 측정한 후 이를 기반으로 인공신경망 모형을 구축하고 검증한다. 본 연구는 협업필터링 추천 성능을 예측할 수 있는 새로운 모형을 제시하였다는 점에서 그 의의가 있으며 이를 통해 기업들의 협업필터링 추천시스템 도입에 대한 의사결정에 도움을 줄 수 있을 것으로 기대된다.