• Title/Summary/Keyword: Density-based Clustering

Search Result 167, Processing Time 0.025 seconds

Local Distribution Based Density Clustering for Speaker Diarization (화자분할을 위한 지역적 특성 기반 밀도 클러스터링)

  • Rho, Jinsang;Shon, Suwon;Kim, Sung Soo;Lee, Jae-Won;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.303-309
    • /
    • 2015
  • Speaker diarization is the task of determining the speakers for unlabeled data, and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) has been widely used in the field of speaker diarization for its simplicity and computational efficiency. One challenging issue, however, is that if different clusters in non-spatial dataset are adjacent to each other, over-clustering may occur which subsequently degrades the performance of DBSCAN. In this paper, we identify the drawbacks of DBSCAN and propose a new density clustering algorithm based on local distribution property around object. Variable density criterions for local density and spreadness of object are used for effective data clustering. We compare the proposed algorithm to DBSCAN in terms of clustering accuracy. Experimental results confirm that the proposed algorithm exhibits higher accuracy than DBSCAN without over-clustering and confirm that the new approach based on local density and object spreadness is efficient.

Density Based Spatial Clustering Method Considering Obstruction (장애물을 고려한 밀도 기반의 공간 클러스터링 기법)

  • 임현숙;김호숙;용환승;이상호;박승수
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.3
    • /
    • pp.375-383
    • /
    • 2003
  • Clustering in spatial mining is to group similar objects based on their distance, connectivity or their relative density in space. In the real world. there exist many physical objects such as rivers, lakes and highways, and their presence may affect the result of clustering. In this paper, we define distance to handle obstacles, and using that we propose the density based clustering algorithm called DBSCAN-O to handle obstacles. We show that DBSCAN-O produce different clustering results from previous density based clustering algorithm DBSCAN by our experiment result.

  • PDF

A Density Peak Clustering Algorithm Based on Information Bottleneck

  • Yongli Liu;Congcong Zhao;Hao Chao
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.778-790
    • /
    • 2023
  • Although density peak clustering can often easily yield excellent results, there is still room for improvement when dealing with complex, high-dimensional datasets. One of the main limitations of this algorithm is its reliance on geometric distance as the sole similarity measurement. To address this limitation, we draw inspiration from the information bottleneck theory, and propose a novel density peak clustering algorithm that incorporates this theory as a similarity measure. Specifically, our algorithm utilizes the joint probability distribution between data objects and feature information, and employs the loss of mutual information as the measurement standard. This approach not only eliminates the potential for subjective error in selecting similarity method, but also enhances performance on datasets with multiple centers and high dimensionality. To evaluate the effectiveness of our algorithm, we conducted experiments using ten carefully selected datasets and compared the results with three other algorithms. The experimental results demonstrate that our information bottleneck-based density peaks clustering (IBDPC) algorithm consistently achieves high levels of accuracy, highlighting its potential as a valuable tool for data clustering tasks.

Approximate fuzzy clustering based on a density function (밀도 함수를 이용한 근사적 퍼지 클러스터링)

  • 손세호;권순학;최윤혁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.94-97
    • /
    • 2000
  • We introduce an approximate fuzzy clustering method, which is simple but computationally efficient, based on density functions in this paper. The density functions are defined by the number of data within the predetermined interval. Numerical examples are presented to show the validity of the proposed clustering method.

  • PDF

A Study on Density-Based Clustering Method Considering Directionality (방향성을 고려한 밀도 기반 클러스터링 기법에 관한 연구)

  • Jinman Kim;Joongjin Kook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.38-44
    • /
    • 2024
  • This research proposed DBSCAN-D, which is a clustering technique for locating POI based on existing density-based clustering research, such as GPS data, generated by moving objects. This method is designed based on 'staying time' and 'directionality' extracted from the relationship between GPS data. The staying time can be extracted through the difference in the reception time between data using the time at which the GPS data is received. Directionality can be expressed by moving the area of data generated later in the direction of the position of the previously generated data by concentrating on the point where the GPS data is sequentially generated. Through these two properties, it is possible to perform clustering suitable for the data set generated by the moving object.

  • PDF

A New Scheme for Maximizing Network Lifetime in Wireless Sensor Networks (무선 센서네트워크에서 네트워크수명 극대화 방안)

  • Kim, Jeong Sahm
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.2
    • /
    • pp.47-59
    • /
    • 2014
  • In this paper, I propose a new energy efficient clustering scheme to prolong the network lifetime by reducing energy consumption at the sensor node. It is possible that a node determines whether to participate in clustering with certain probability based on local density. This scheme is useful under the environment that sensor nodes are deployed unevenly within the sensing area. By adjusting the probability of participating in clustering dynamically with local density of nodes, the energy consumption of the network is reduced. So, the lifetime of the network is extended. In the region where nodes are densely deployed, it is possible to reduce the energy consumption of the network by limiting the number of node which is participated in clustering with probability which can be adjusted dynamically based on local density of the node. Through computer simulation, it is verified that the proposed scheme is more energy efficient than LEACH protocol under the environment where node are densely located in a specific area.

An Enhanced Density and Grid based Spatial Clustering Algorithm for Large Spatial Database (대용량 공간데이터베이스를 위한 확장된 밀도-격자 기반의 공간 클러스터링 알고리즘)

  • Gao, Song;Kim, Ho-Seok;Xia, Ying;Kim, Gyoung-Bae;Bae, Hae-Young
    • The KIPS Transactions:PartD
    • /
    • v.13D no.5 s.108
    • /
    • pp.633-640
    • /
    • 2006
  • Spatial clustering, which groups similar objects based on their distance, connectivity, or their relative density in space, is an important component of spatial data mining. Density-based and grid-based clustering are two main clustering approaches. The former is famous for its capability of discovering clusters of various shapes and eliminating noises, while the latter is well known for its high speed. Clustering large data sets has always been a serious challenge for clustering algorithms, because huge data set would make the clustering process extremely costly. In this paper, we propose an enhanced Density-Grid based Clustering algorithm for Large spatial database by setting a default number of intervals and removing the outliers effectively with the help of a proper measurement to identify areas of high density in the input data space. We use a density threshold DT to recognize dense cells before neighbor dense cells are combined to form clusters. When proposed algorithm is performed on large dataset, a proper granularity of each dimension in data space and a density threshold for recognizing dense areas can improve the performance of this algorithm. We combine grid-based and density-based methods together to not only increase the efficiency but also find clusters with arbitrary shape. Synthetic datasets are used for experimental evaluation which shows that proposed method has high performance and accuracy in the experiments.

An Improved Automated Spectral Clustering Algorithm

  • Xiaodan Lv
    • Journal of Information Processing Systems
    • /
    • v.20 no.2
    • /
    • pp.185-199
    • /
    • 2024
  • In this paper, an improved automated spectral clustering (IASC) algorithm is proposed to address the limitations of the traditional spectral clustering (TSC) algorithm, particularly its inability to automatically determine the number of clusters. Firstly, a cluster number evaluation factor based on the optimal clustering principle is proposed. By iterating through different k values, the value corresponding to the largest evaluation factor was selected as the first-rank number of clusters. Secondly, the IASC algorithm adopts a density-sensitive distance to measure the similarity between the sample points. This rendered a high similarity to the data distributed in the same high-density area. Thirdly, to improve clustering accuracy, the IASC algorithm uses the cosine angle classification method instead of K-means to classify the eigenvectors. Six algorithms-K-means, fuzzy C-means, TSC, EIGENGAP, DBSCAN, and density peak-were compared with the proposed algorithm on six datasets. The results show that the IASC algorithm not only automatically determines the number of clusters but also obtains better clustering accuracy on both synthetic and UCI datasets.

Visualizing Cluster Hierarchy Using Hierarchy Generation Framework (계층 발생 프레임워크를 이용한 군집 계층 시각화)

  • Shin, DongHwa;L'Yi, Sehi;Seo, Jinwook
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.6
    • /
    • pp.436-441
    • /
    • 2015
  • There are many types of clustering algorithms such as centroid, hierarchical, or density-based methods. Each algorithm has unique data grouping principles, which creates different varieties of clusters. Ordering Points To Identify the Clustering Structure (OPTICS) is a well-known density-based algorithm to analyze arbitrary shaped and varying density clusters, but the obtained clusters only correlate loosely. Hierarchical agglomerative clustering (HAC) reveals a hierarchical structure of clusters, but is unable to clearly find non-convex shaped clusters. In this paper, we provide a novel hierarchy generation framework and application which can aid users by combining the advantages of the two clustering methods.

[Retracted]Hot Spot Analysis of Tourist Attractions Based on Stay Point Spatial Clustering

  • Liao, Yifan
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.750-759
    • /
    • 2020
  • The wide application of various integrated location-based services (LBS social) and tourism application (app) has generated a large amount of trajectory space data. The trajectory data are used to identify popular tourist attractions with high density of tourists, and they are of great significance to smart service and emergency management of scenic spots. A hot spot analysis method is proposed, based on spatial clustering of trajectory stop points. The DBSCAN algorithm is studied with fast clustering speed, noise processing and clustering of arbitrary shapes in space. The shortage of parameters is manually selected, and an improved method is proposed to adaptively determine parameters based on statistical distribution characteristics of data. DBSCAN clustering analysis and contrast experiments are carried out for three different datasets of artificial synthetic two-dimensional dataset, four-dimensional Iris real dataset and scenic track retention point. The experiment results show that the method can automatically generate reasonable clustering division, and it is superior to traditional algorithms such as DBSCAN and k-means. Finally, based on the spatial clustering results of the trajectory stay points, the Getis-Ord Gi* hotspot analysis and mapping are conducted in ArcGIS software. The hot spots of different tourist attractions are classified according to the analysis results, and the distribution of popular scenic spots is determined with the actual heat of the scenic spots.