• Title/Summary/Keyword: Density of underground facilities

Search Result 20, Processing Time 0.025 seconds

Study on the application methods of the power induction screening factor in urban and rural areas using the building density distribution (건물 밀집도 분포를 이용한 도시와 시골의 전력유도 차폐 계수 적용 방안 연구)

  • Choi, Mun-hwan;Lee, Snag-mu;Cho, Pyung-dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.500-502
    • /
    • 2013
  • The metallic underground pipes like as metropolitan water supply pipes and gas pipes have a screening effects for power induction phenomenon. Generally, urban area has more metallic underground facilities than rural areas because of its buildings or population density. So we can expect high screening effects for the power induction in urban areas, and we call it the city screening factor. We had carried out the measuring test in urban and rural area respectively 30 sites to prove the actual effects of city screening factor and we derived the numerical value of city screening effects. But we faced with a difficult question that how we can classify the real urban areas or rural areas correctly. In this paper, we introduce the classification method using density of building in test area to apply the city screening factor reasonably.

  • PDF

Analysis of Ground Subsidence Influencing Factors Using Underground Facility Property Information (지하매설물 속성정보를 활용한 지반함몰 영향인자 분석)

  • Jaemo Kang;Sungyeol Lee;Jinyoung Kim;Myeongsik Kong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.1
    • /
    • pp.5-11
    • /
    • 2024
  • Ground subsidence mainly occurs in urban areas with high population density, so it is necessary to clearly identify the cause of occurrence and prepare in advance. The main cause of ground subsidence is reported to be the creation of cavities in the ground due to damage to underground pipes, but the property information and influencing factors of underground pipes to predict and prepare for ground subsidence are not properly established. Therefore, in this study, factors showing a significant correlation with the occurrence of ground subsidence were selected among the underground facility property information and a regression equation was proposed through logistic regression analysis. For this purpose, data on underground structures and ground subsidence history information in the target area were collected, and the target area was divided into girds of 100m x 100m in size using QGIS. The underground facility attribute information and ground subsidence history information contained within the gird were extracted. Then, preprocessing was performed to construct a dataset and correlation analysis was performed. As a result, factors excluding the year of sewer pipes and communication pipes and the average depth of communication pipes, heat pipes, and gas pipes were found to have a significant correlation with ground subsidence. In addition, a regression equation for whether ground subsidence occurred in the target area is proposed through logistic regression analysis.

Physical, mechanical and hydraulic properties of Inada granite and Shirahama sandstone in Japan

  • Zhang Ming;Takeda Mikio
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.206-213
    • /
    • 2003
  • Laboratory testing of representative rock specimens is of fundamental necessity for the successful design and/or assessment of facilities associated with many kinds of underground exploitation, including the geological disposal of radioactive nuclear waste. As a fundamental and systematic study, a series of measurements of the physical, mechanical and hydraulic properties of Inada granite and Shirahama sandstone, two rock types that are widely available in Japan, have been performed. This paper presents the results of a study of the effective porosity, density, compressive and shear wave velocity, unconfined compressive strength and permeability of the two rocks. The anisotropy and the effects of confining pressure on the permeability of the rocks, as well as the relationships among the physical, mechanical and hydraulic properties, are also investigated and discussed.

  • PDF

Study for Reducing Safety Distance by Installing Ammunition Storage Facility in Underground (탄약저장시설 지하화에 따른 안전거리 축소방안 연구)

  • Park, Sangwoo;Jun, Jonghoon;Choi, Hangseok;Park, Young-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.3
    • /
    • pp.253-260
    • /
    • 2020
  • With increasing interest in an underground-type ammunition storage facility, several design results have been provided recently. However, since not only experts in the tunnel but also military persons in charge of ammunition have not fully understood the safety distance standard, reliable design results are not being produced. In this study, the effective design method of an underground-type ammunition storage facility was provided by analyzing the current safety distance standard. First, the critical safety distances that dominate the size of construction site for underground-type ammunition storage facilities were evaluated, which are the layout of chambers and the configuration of the entrances. Then, the decreasing effect of inter-chamber distance was studied according to the rock type and the storage density of ammunition. In addition, the method of designing tunnels with parallel lines and two-floors was considered for arranging more chambers while complying with the safety distance standards. In particular, numerical simulations were carried out to determine the satisfaction of the safety distance standards when an underground-type ammunition storage facility is composed of two-floor and the decreasing effect of inter-chamber distance according to the inner explosive pressure reduction. Finally, the method to adjust the size of entrances and the path of pressure were studied for decreasing the safety distance at the entrance.

Numerical Analysis of Electrical Resistance Variation according to Geometry of Underground Structure (지하매설물의 기하학적 특성에 따른 전기저항 변화에 대한 수치 해석 연구)

  • Kim, Tae Young;Ryu, Hee Hwan;Chong, Song-Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.49-62
    • /
    • 2024
  • Reckless development of the underground by rapid urbanization causes inspection delay on replacement of existing structure and installation new facilities. However, frequent accidents occur due to deviation in construction design planned by inaccurate location information of underground structure. Meanwhile, the electrical resistivity survey, knowns as non-destructive method, is based on the difference in the electric potential of electrodes to measure the electrical resistance of ground. This method is significantly advanced with multi-electrode and deep learning for analyzing strata. However, there is no study to quantitatively assess change in electrical resistance according to geometric conditions of structures. This study evaluates changes in electrical resistance through geometric parameters of electrodes and structure. Firstly, electrical resistance numerical module is developed using generalized mesh occurring minimal errors between theoretical and numerical resistance values. Then, changes in resistances are quantitatively compared on geometric parameters including burial depth, diameter of structure, and distance electrode and structure under steady current condition. The results show that higher electrical resistance is measured for shallow depth, larger size, and proximity to the electrode. Additionally, electric potential and current density distributions are analyzed to discuss the measured electrical resistance around the terminal electrode and structure.

Geology and Fracture Distribution in the Vicinities of the Cheonseong and Jeongjok Mountains (천성산과 정족산 일원의 지질과 단열 분포)

  • Son, Moon;Kim, Jong-Sun;Hwang, Byoung-Hoon;Ryoo, Chung-Ryul;Ock, Soo-Seok;Hamm, Se-Yeong;Kim, In-Soo
    • The Journal of Engineering Geology
    • /
    • v.13 no.1
    • /
    • pp.107-127
    • /
    • 2003
  • After detailed geological mapping, structural and fracture-density data were collected and analyzed in the vicinity of Cheonseong and Jeongjok Mts., Gyeongsangnam-do. A extensive dextral strike-slip fault (Beopgi Fault) Parallel to Yangsan and Dongrae Faults, a dextral-transtensional-NW fault, and a few intermittent faults have been found in the study area. Based on strike and frequency, fracture system has been divided into three sets such as NNE-trending J1 ($NS-40^{\circ}E$), WNW-trending J2 ($N50^{\circ}-80^{\circ}W$), and ENE-trending J3 ($N60^{\circ}-90^{\circ}E$). According to analysis of fracture density, it is revealed as follows: (a) Jl is the combination of Y-, P-, and R-shear fractures due to the dextral strike-slip of the Beopgi Fault. (b) J2 is the preexisted fracture zone conducting the intrusion of granite. Two tensional fractures dipping to NNE and SSW respectively have been induced by intrusion of granite and followed crustal uplift. (c) J3 is the tensional fracture developed between Yangsan and Dongrae Faults having NNE trend and dextral strike-slip sense. This study aims to reduce environmental impact and insure stability of underground facilities and tunnels.

Experiments for Efficiency of a Wireless Communication in a Buffer Material and Conceptual Design of THM Integrated Sensor System (완충재 내 무선 통신 효율 실험 및 THM 통합 센서 시스템 개념 설계)

  • Chang-Ho Hong;Jiwook Choi;Jin-Seop Kim;Sinhang Kang
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.267-282
    • /
    • 2024
  • This study aims to develop a wireless communication system for long-term monitoring of high-level radioactive waste disposal facilities. Conventional wired sensors can lead to a deterioration in buffer quality and management difficulties due to the use of cables for power supply and data transmission. This study proposes the adoption of a wireless communication system and compares the received signal strengths within bentonite using modules such as WiFi, ZigBee, and LoRa. Increases in dry density of bentonite and distance between transceivers led to reduced received signal strength. Additionally, using the low-frequency band exhibited less signal attenuation. Based on these findings, a conceptual design for a wireless network-based THM integrated sensor system was proposed. Results of this study can be used as foundational data for long-term monitoring of disposal facility.

Classification of Ground Subsidence Factors for Prediction of Ground Subsidence Risk (GSR) (굴착공사 중 지반함몰 위험예측을 위한 지반함몰인자 분류)

  • Park, Jin Young;Jang, Eugene;Kim, Hak Joon;Ihm, Myeong Hyeok
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.153-164
    • /
    • 2017
  • The geological factors for causing ground subsidence are very diverse. It can be affected by any geological or extrinsic influences, and even within the same geological factor, the soil depression impact factor can be determined by different physical properties. As a result of reviewing a large number of papers and case histories, it can be seen that there are seven categories of ground subsidence factors. The depth and thickness of the overburden can affect the subsidence depending on the existence of the cavity, whereas the depth and orientation of the boundary between soil and rock are dominant factors in the ground composed of soil and rock. In case of soil layers, more various influencing factors exist such as type of soil, shear strength, relative density and degree of compaction, dry unit weight, water content, and liquid limit. The type of rock, distance from the main fracture and RQD can be influential factors in the bedrock. When approaching from the hydrogeological point of view, the rainfall intensity, the distance and the depth from the main channel, the coefficient of permeability and fluctuation of ground water level can influence to ground subsidence. It is also possible that the ground subsidence can be affected by external factors such as the depth of excavation and distance from the earth retaining wall, groundwater treatment methods at excavation work, and existence of artificial facilities such as sewer pipes. It is estimated that to evaluate the ground subsidence factor during the construction of underground structures in urban areas will be essential. It is expected that ground subsidence factors examined in this study will contribute for the reliable evaluation of the ground subsidence risk.

Cause Analysis for Reduced Effect of Sewer Pipe Improvement Project Based On Investigation of Interceptor Sewers (차집관로의 조사 및 분석을 통한 하수관로정비 사업의 효과 감소 원인 분석)

  • Chae, Myungbyung;Bae, Younghye;Kim, Hungsoo
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.219-226
    • /
    • 2018
  • Interceptor sewer is installed underground near to the river side mostly ofstate-owned land and the management efficiency of public sewage disposal facilities is decreasing as too much infiltration/inflow(I/I) and river flow to interceptor sewer are caused by broken or deteriorated sewer. This also affects the sewer pipeline project and decreases its efficiency. Therefore, the aim of this study is to investigate interceptor sewer which has influence on the reduction of the project effect. The investigation were performed for three study areas. The study includes the investigation of current condition of interceptor sewer(sewer extension, pipe diameter, pipe type, installed year, installed locations, etc), investigation of inside of sewer by CCTV accompanied by pumping and dredging works where required, investigation of inside of manholes by eyes, calculation of pollutant load using the results of investigation of flow quantity and quality. Multipoint investigations were simultaneously performed for flow quantity at confluence area and other investigations were also performed for flow quantity and BOD for interceptor sewer and comparison of pollutant load, investigation of infiltration/inflow(I/I) caused by deterioration of interceptor sewer. As the result of the study, a main reason for reduced effect of sewer pipe improvement project was analyzed as the low-density sewage and I/I in public seweage treatment Facility due to deteriorated and unmanaged interceptor sewers.

A study on the feasibility evaluation technique of urban utility tunnel by using quantitative indexes evaluation and benefit·cost analysis (정량적 지표평가와 비용·편익 분석을 활용한 도심지 공동구의 타당성 평가기법 연구)

  • Lee, Seong-Won;Chung, Jee-Seung;Na, Gwi-Tae;Bang, Myung-Seok;Lee, Joung-Bae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.61-77
    • /
    • 2019
  • If a new utility tunnel is planned for high density existing urban areas in Korea, a rational decision-making process such as the determination of optimum design capacity by using the feasibility evaluation system based on quantitative evaluation indexes and the economic evaluation is needed. Thus, the previous study presented the important weight of individual higher-level indexes (3 items) and sub-indexes (16 items) through a hierarchy analysis (AHP) for quantitative evaluation index items, considering the characteristics of each urban type. In addition, an economic evaluation method was proposed considering 10 benefit items and 8 cost items by adding 3 new items, including the effects of traffic accidents, noise reduction and socio-economic losses, to the existing items for the benefit cost analysis suitable for urban utility tunnels. This study presented a quantitative feasibility evaluation method using the important weight of 16 sub-index items such as the road management sector, public facilities sector and urban environment sector. Afterwards, the results of quantitative feasibility and economic evaluation were compared and analyzed in 123 main road sections of the Seoul. In addition, a comprehensive evaluation method was proposed by the combination of the two evaluation results. The design capacity optimization program, which will be developed by programming the logic of the quantitative feasibility and economic evaluation system presented in this study, will be utilized in the planning and design phases of urban community zones and will ultimately contribute to the vitalization of urban utility tunnels.