• Title/Summary/Keyword: Density of states

Search Result 555, Processing Time 0.041 seconds

A Quantitative Ultrastructural Study on the Effects of Ischemia and Reperfusion on the Rat and Cat Hearts (허혈 및 재관류가 흰쥐 및 고양이 심장에 미치는 영향에 관한 형태계측학적 연구)

  • Park, Young-Sik;Uhm, Chang-Sub;Suh, Young-Suk
    • Applied Microscopy
    • /
    • v.22 no.1
    • /
    • pp.42-54
    • /
    • 1992
  • To understand the structural changes of the myocardial myocytes and endothelial cells in ischemic and reperfused heart, and to elucidate their roles in those conditions, the authors observed cat and rat myocardium ultrastructurally and evaluated them with morphometric techniques. In cat, mild ischemia and moderate degree reperfusion injury was induced by ligation of the anterior interventricular branch of left coronary artery and reperfusion. In rat, severe ischemia and irreversible reperfusion iniury was made using in vitro Langendorff techniques. In normal cat myocytes, the volume densities of cytoplasm, myofibrils, mitochondria, sarcoplasmic reticulum and T tubules were $0.11{\pm}0.013,\;0.51{\pm}0.096,\;0.25{\pm}0.082,\;0.09{\pm}0.008,\;0.02{\pm}0.010$ (Mean${\pm}$S.D.) respectively, and the myofibril/mitochondria ratio was $2.33{\pm}1.379$. The numerical density and average volume of mitochondria were $0.76{\pm}0.210/{\mu}m^3$ and $0.33{\pm}0.057{\mu}m^3$ respectively. In normal cat endothelial cells, the volume densities of cytoplasm, cytoplasmic vesicles, tubular systems (including endoplasmic reticulum and Golgi apparatus) and mitochondria were $0.43{\pm}0.023,\;0.28{\pm}0.007,\;0.22{\pm}0.021,\;0.03{\pm}0.014$ respectively. The mean thickness of endothelial cells was $230{\pm}45.2{\mu}m$. The numerical density and average volume of cytoplasmic vesicles were $508{\pm}55.0/{\mu}m^3,\;578{\pm}104.8nm^3$ respectively. In cat myocytes which received mild ischemic injury, the volume densities of organelles were not changed significantly in ischemic and reperfusion states. In reperfusion group myocytes, the numerical density of mitochondria was decreased significantly and the average volume was increased significantly. In endothelial cells, the volume density of tubular system in ischemic group and the average volume of cytoplasmic vesicles in reperfusion group were increased significantly. In rat myocytes which received severe ischemic injury, the volume density and average volume of mitochondria were increased significantly, and the volume density of sarcoplasmic reticulum and numerical density of mitochondria were decreased significantly in both ischemic and reperfusion groups. In ischemic and reperfused endothelial cells, the volume density and numerical density of cytoplasmic vesicles, the volume density of cytoplasm were decreased significantly. The volume densities of tubular system were increased significantly in both ischemic and reperfused groups. The volume density of mitochondria in ischemic group and the average volume of cytoplasmic vesicles in reperfusion group showed significant increase. The authors, based on the above observations, conclude that the mitochondria of myocytes and the cytoplasmic vesicles of endothelia are the first group of targets in ischemic and reperfusion injury and in this respect, the degree of ischemic insult is not significant. The role of myocyte mitochondria in reperfusion injury may be insignificant, but endothelial cells may contribute actively to reperfusion injury.

  • PDF

Studies on the Modeling and Analysis of the EMG interference pattern signal (근전도 간섭패턴 신호의 모델링과 분석에 관한 연구)

  • Yoo, S.K.;Min, B.G.;Kim, J.W.;Kim, J.W.;Kim, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.11
    • /
    • pp.145-150
    • /
    • 1993
  • It is an important component of the diagnosis to research the morphological changes of EMG in pathological conditions. In order to provide an EMG signal resulting from a predetermined neuromuscular pathophysiology, we have initially developed a mathmatical model of electromyographic interference pattern(IP). It can be used to study the variation of the IP resulting from morphological and electrophysiological changes occurring in disease states, because the model computes the IP from the underlying fiber and muscle structure. We performed quantative analysis or the model output, focusing on IPs resulting from simulations of dystrophic fiber loss and the MU denervation and reinnervation typical of neuropathies. To discribe the characteristics of IPs associated with these pathologies, a set of frequency domain discriptors, activity, mobility, and complexity were used, as well as several measures of the spectral density function. These discriptors demonstrate distinct patterns of variation corresponding to morphological changes observed in disease states, and closely with results obtained from the classical method, turn/amp technique.

  • PDF

Spectroscopic and Morphological Investigation of Copper Oxide Thin Films Prepared by Magnetron Sputtering at Various Oxygen Ratios

  • Park, Ju-Yun;Lim, Kyoung-A;Ramsier, Rex D.;Kang, Yong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3395-3399
    • /
    • 2011
  • Copper oxide thin films were synthesized by reactive radio frequency magnetron sputtering at different oxygen gas ratios. The chemical and physical properties of the thin films were investigated by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). XPS results revealed that the dominant oxidation states of Cu were $Cu^0$ and $Cu^+$ at 0% oxygen ratio. When the oxygen ratios increased above 5%, Cu was oxidized as CuO as detected by X-ray induced Auger electron spectroscopy and the $Cu(OH)_2$ phase was confirmed independent of the oxygen ratio. The valence band maxima were $1.19{\pm}0.09$ eV and an increase in the density of states was confirmed after formation of CuO. The thickness and roughness of copper oxide thin films decreased with increasing oxygen ratio. The crystallinity of the copper oxide films changed from cubic Cu through cubic $Cu_2O$ to monoclinic CuO with mean crystallite sizes of 8.8 nm (Cu) and 16.9 nm (CuO) at the 10% oxygen ratio level.

Pseudogap behavior in interlayer tunneling spectroscopy in $Bi_{2}Sr_{2}CaCu_{2}O_{8+x}$

  • Bae Myung-Ho;Choi Jae-Hyun;Lee Hu-Jong
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • A pseudogap in the normal-state quasiparticle density of states of $high-T_c$ superconductors has been revealed in many different kinds of experiments. The existence of the pseudogap and the superconducting gap, and the correlation between them has attracted considerable attention because they are believed to be a key to understanding the mechanism of the $high-T_c$ superconductivity. The interlayer tunneling spectroscopy, excluding the surface-dependent effect, is one of the most accurate means to examine the electron spectral characteristics both in the superconducting and the normal states. In this study, a new constant-temperature intrinsic tunneling spectroscopic technique, excluding the overheating effect using the in-situ temperature monitoring combined with the digital proportional-integral-derivative control, is introduced. The implication on the $high-T_c$ superconductivity of the detailed temperature dependencies of the observed spectral weight in $Bi_{2}Sr_{2}CaCu_{2}O_{8+x}\;high-T_c$ material for overdoped and underdoped levels is discussed.

  • PDF

Structural Evolution and Electrical Properties of Highly Active Plasma Process on 4H-SiC

  • Kim, Dae-Kyoung;Cho, Mann-Ho
    • Applied Science and Convergence Technology
    • /
    • v.26 no.5
    • /
    • pp.133-138
    • /
    • 2017
  • We investigated the interface defect engineering and reaction mechanism of reduced transition layer and nitride layer in the active plasma process on 4H-SiC by the plasma reaction with the rapid processing time at the room temperature. Through the combination of experiment and theoretical studies, we clearly observed that advanced active plasma process on 4H-SiC of oxidation and nitridation have improved electrical properties by the stable bond structure and decrease of the interfacial defects. In the plasma oxidation system, we showed that plasma oxide on SiC has enhanced electrical characteristics than the thermally oxidation and suppressed generation of the interface trap density. The decrease of the defect states in transition layer and stress induced leakage current (SILC) clearly showed that plasma process enhances quality of $SiO_2$ by the reduction of transition layer due to the controlled interstitial C atoms. And in another processes, the Plasma Nitridation (PN) system, we investigated the modification in bond structure in the nitride SiC surface by the rapid PN process. We observed that converted N reacted through spontaneous incorporation the SiC sub-surface, resulting in N atoms converted to C-site by the low bond energy. In particular, electrical properties exhibited that the generated trap states was suppressed with the nitrided layer. The results of active plasma oxidation and nitridation system suggest plasma processes on SiC of rapid and low temperature process, compare with the traditional gas annealing process with high temperature and long process time.

Local Electronic Structures of Graphene Probed by Scanning Tunneling Spectroscopy

  • Jang, Won-Jun;Lee, Eui-Sup;Kim, Howon;Yoon, JongKeon;Chang, Yunhee;Kim, Yong-Hyun;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.132.2-132.2
    • /
    • 2013
  • Electrons in graphene make ballistic transport with very high mobility (${\sim}2{\times}105 $cm2V-1s-1), which holds promises for applications in fast electronic devices. However, such expectations have been hampered by the semi-metallicity or zero bandgap of graphene, which makes it impossible to completely turn off graphene transistor devices. Here, we report the observations of local bandgap modulations in Moir$\acute{e}$ patterned graphene on metal substrates using scanning tunneling microscopy and spectroscopy. The Moir$\acute{e}$ patterned graphene was made by combinations of self-assembly processes, and they showed additional electronic states that could be interpreted as sub-band states. Our experimental observations could be explained with orbital transitions of carbon atoms from sp2 to sp3, as supported by our density functional theory calculation results. Our findings will add new poweful components for device applications.

  • PDF

Effect of Interface Charges on the Transient Characteristics of 4H-SiC DMOSFETs (4H-SiC DMOSFETs의 계면 전하 밀도에 따른 스위칭 특성 분석)

  • Kang, Min-Seok;Moon, Kyoung-Sook;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.436-439
    • /
    • 2010
  • SiC power device possesses attractive features, such as high breakdown voltage, high-speed switching capability, and high temperature operation. In general, device design has a significant effect on the switching characteristics. In this work, we report the effect of the interface states ($Q_f$) on the transient characteristics of SiC DMOSFETs. The key design parameters for SiC DMOSFETs have been optimized by using a physics-based two-dimensional (2-D) mixed device and circuit simulator by Silvaco Inc. When the $SiO_2$/SiC interface charge decreases, power losses and switching time also decrease, primarily due to the lowered channel mobilities. High density interface states can result in increased carrier trapping, or more recombination centers or scattering sites. Therefore, the quality of $SiO_2$/SiC interfaces has a important effect on both the static and transient properties of SiC MOSFET devices.

High Density and Low Voltage Programmable Scaled SONOS Nonvolatile Memory for the Byte and Flash-Erased Type EEPROMs (플래시 및 바이트 소거형 EEPROM을 위한 고집적 저전압 Scaled SONOS 비휘발성 기억소자)

  • 김병철;서광열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.831-837
    • /
    • 2002
  • Scaled SONOS transistors have been fabricated by 0.35$\mu\textrm{m}$ CMOS standard logic process. The thickness of stacked ONO(blocking oxide, memory nitride, tunnel oxide) gate insulators measured by TEM are 2.5 nm, 4.0 nm and 2.4 nm, respectively. The SONOS memories have shown low programming voltages of ${\pm}$8.5 V and long-term retention of 10-year Even after 2 ${\times}$ 10$\^$5/ program/erase cycles, the leakage current of unselected transistor in the erased state was low enough that there was no error in read operation and we could distinguish the programmed state from the erased states precisely The tight distribution of the threshold voltages in the programmed and the erased states could remove complex verifying process caused by over-erase in floating gate flash memory, which is one of the main advantages of the charge-trap type devices. A single power supply operation of 3 V and a high endurance of 1${\times}$10$\^$6/ cycles can be realized by the programming method for a flash-erased type EEPROM.

Controlling Spin State of Magnetic Molecules by Oxygen Binding Studied Using Scanning Tunneling Microscopy

  • Lee, Soon-hyeong;Chang, Yun Hee;Kim, Howon;Kim, Kyung Min;Kim, Yong-Hyun;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.145.1-145.1
    • /
    • 2016
  • Binding and unbinding between molecular oxygen and metallo-porphyrin is a key process for oxygen delivery in respiration. It can be also used to control spin state of magnetic metallo-porphyrin molecules. Controlling and sensing spin states of magnetic molecules in such reactions at the single molecule level is essential for spintronic molecular device applications. Here, we demonstrate that spin states of metallo-porphyrin on surfaces can be controlled over by binding and unbinding of oxygen molecule, and be sensed using scanning tunneling microscopy and spectroscopy. Kondo localized state of metallo-porphyrin showed significant modification by the binding of oxygen molecule, implying that the spin state was changed. Our density functional theory calculation results explain the observations with the hybridization of unpaired spins in d and ${\pi}^*$ orbitals of metallo-porphyrin and oxygen, respectively. Our study opens up ways to control molecular spin state and Kondo effect by means of molecular binding and unbinding reactions on surfaces.

  • PDF

Methodological Consideration on the Prediction of Electrochemical Mechanical Polishing Process Parameters by Monitoring of Electrochemical Characteristics of Copper Surface

  • Seo, Yong-Jin
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.346-351
    • /
    • 2020
  • The removal characteristics of copper (Cu) from electrochemical surface by voltage-activated reaction were reviewed to assess the applicability of electrochemical-mechanical polishing (ECMP) process in three types of electrolytes, such as HNO3, KNO3 and NaNO3. Electrochemical surface conditions such as active, passive, transient and trans-passive states were monitored from its current-voltage (I-V) characteristic curves obtained by linear sweep voltammetry (LSV) method. In addition, the oxidation and reduction process of the Cu surface by repetitive input of positive and negative voltages were evaluated from the I-V curve obtained using the cyclic voltammetry (CV) method. Finally, the X-ray diffraction (XRD) patterns and energy dispersive spectroscopy (EDS) analyses were used to observe the structural surface states of a Cu electrode. The electrochemical analyses proposed in this study will help to accurately control the material removal rate (MRR) from the actual ECMP process because they are a good methodology for predicting optimal electrochemical process parameters such as current density, operating voltage, and operating time before performing the ECMP process.