• Title/Summary/Keyword: Density interface

Search Result 956, Processing Time 0.023 seconds

Biogeochemical Study of Dissolved Organic and Inorganic Compounds under Oxic/Anoxic Environment in Lake Shihwa (시화호 산화-환원 환경하의 용존 유, 무기 화합물의 생지화학적 연구)

  • Park, Yong-Chul;Park, Jun-Kun;Han, Myong-Woo;Son, Seung-Kyu;Kim, Moon-Koo;Huh, Seong-Hoi
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.53-68
    • /
    • 1997
  • Lake Shihwa, artificially constructed since 1988, shows a typical two-layered system depending on strong haline density stratification. Sill of the water gate at 6 m depth greatly restricts physical mixing with outer seawater and circulation in the lake, and contributes to the enhancement of anoxic environment in the deeper layer. With this enclosed physical environment, Lake Shihwa receives enormous amounts of organics, ammonia, and other pollutants from the neighboring municipal and industrial complexes through six major streams, thus developing biogeochemical differentiation of anoxic to suboxic environment in the high saline bottom water and highly eutrophicated brackish surface water. This study investigated vertical structures, biogeochemical behaviors and processes of various organic and inorganic compounds around oxic-anoxic interface. Nitrite and nitrate rapidly decreased below the pycnocline where about $1{\times}10^8$ tons of hypoxic bottom water exist. In this bottom layer, ammonium ranged from 75 to 360 ${\mu}M$ mainly resulting from deamination of dissolved organic nitrogen and ammonification of precipitated organic particles. Despite large amounts of surface water discharge and dilution by outer seawater inflow about $3{\times}10^8$ tons from April to August, 1996, bottom layer did not show any improvement of water quality and maintained highly reduced environment. The main reason seems to be imbalance between ineffectiveness of dilution due to shallow depth and large surface area, overloaded POC influx from the eutrophicated surface biological activity, and poor replenishment of oxygen in this artificial lake system. Therefore, as long as current salinity dependent two-layered system maintains with its physical limitations, any improvement of water quality cannot be foreseen in Lake Shihwa.

  • PDF

Morphological Properties of Binary Blends of Polyolefins Synthesized by Metallocene and Ziegler-Natta Catalysts (Ziegler-Natta와 메탈로센 촉매로 합성된 폴리올레핀 2원 블렌드의 상 형태학)

  • Kwag, Hanjin;Kim, Hak Lim;Choe, Soonja
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.944-948
    • /
    • 1999
  • The morphological properties of four binary blends of polyethylene synthesized by metallocene catalyst(MCPE) and four polyolefins prepared by Ziegler-Natta catalyst have been investigated to interpret the effect of micro-molecular structure on the phase morphology and interfacial behavior; four binary blend systems studied are high density polyethylene(HDPE)-metallocene polyethylene (MCPE), polypropylene(PP)-MCPE, poly(propylene-co-ethylene) (CoPP)-MCPE, and poly(propylene-co-ethylene-co-1-butylene) (TerPP)-MCPE, and they are all phase separated. The HDPE-MCPE blend shows evenly growing homogeneous HDPE domain on the continuous MCPE phase, on the other hand, the rest of three blends show complex heterogeneous phase behavior. The PP-MCPE blend shows that PP and MCPE and completely phase separated and phase inversion takes place at 50% MCPE. The CoPP-MCPE and TerPP-MCPE show enhanced interface due to the same micro-molecular structure of ethylene, and phase inversion takes place at 40% MCPE. In particular, TerPP-MCPE blend shows improved phase morphology between interfaces, and this may be arisen from the comonomer contents in TerPP, which are 1-butene and ethylene having the same chemical structure as that of MCPE. The enhancement of the phase morphology in the TerPP-MCPE blend is correlated with the mechanical and morphological properties. Thus, although the four blend systems are phase separated, the phase morphology suggests that the order of interfacial adhesion strength be HDPE-MCPE > TerPP-MCPE > CoPP-MCPE > PP-MCPE and that micro-molecular structure between constituents be one of major factors giving enhanced interfacial adhesion.

  • PDF

A Study on Facilities Damage Characteristics Caused by Forest Fire in Goseong-Gun (고성산불로 인한 시설물피해특성 연구)

  • Yeom, Chanho;Lee, Si-young;Park, Houngsek;Kwon, Chungeun
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.469-478
    • /
    • 2019
  • Purpose: In this studies we examine the facilities damage characteristics caused by forest fire. Therefore, we surveyed damaged facilities from forest fire which was occurred on Goseong-Gun on march 28 in 2019.(damaged areas was 40ha) The types of facilities uses were house, public facility, warehouse and so on. 17 facilities were destroyed. The purpose of this study was to for establishing a disaster safety village in rural areas where damage from a similar type of disaster occurs repeatedly by conducting the consciousness survey targeting at experts and disaster safety officials in a local government. Method: We surveyed meteorological factors(temperature, wind speed, wind direction, humidity) per a minute for analyzing weather condition on Goseong-Gun when forest fire was occurred, spread and extinguished. And we surveyed forest fire risk factors(a slope degree, a slope direction, a geographical feature, a distance between forest and facility, main species, the existence of crown fire ignition, the direction of facility, the main material of building) around 10 damaged facilities. Finally, we analyzed damage pattern of facilities using meteorological factor and forest fire reisk fator Result: The weather condition of Kanseonng AWS (No.517) was high temperature, arid and strong wind, when the forest fire was occurred and spread. An average wind speed was 4.1m/s and the maximum wind speed was 11.6m/s. The main direction of wind was W(225~315°). Damaged facilities were located on the steep slope area and on the mountaintop. The forest density around facilities was high and main species was korean red pine. The crown fire was occurred in the forest around damaged facilities. The average distance was 13.5m from forest to facilities. When the main matarial of building was made by fire resistance materials (for example, rainforced concrete), the damage was slightly. on the other hand, when by flammable material (for example, a Sandwich Panel), the facilities were totally destroyed Conclusion: The results of this research which were the thinning around house, making a safety distance, the improvement of main material of building and etc, will be helpful for establishing a counter measure for a forest fire prevention of facilities in wild land urban interface

An Investigation of the Current Squeezing Effect through Measurement and Calculation of the Approach Curve in Scanning Ion Conductivity Microscopy (Scanning Ion Conductivity Microscopy의 Approach Curve에 대한 측정 및 계산을 통한 Current Squeezing 효과의 고찰)

  • Young-Seo Kim;Young-Jun Cho;Han-Kyun Shin;Hyun Park;Jung Han Kim;Hyo-Jong Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.54-62
    • /
    • 2024
  • SICM (Scanning Ion Conductivity Microscopy) is a technique for measuring surface topography in an environment where electrochemical reactions occur, by detecting changes in ion conductivity as a nanopipette tip approaches the sample. This study includes an investigation of the current response curve, known as the approach curve, according to the distance between the tip and the sample. First, a simulation analysis was conducted on the approach curves. Based on the simulation results, then, several measuring experiments were conducted concurrently to analyze the difference between the simulated and measured approach curves. The simulation analysis confirms that the current squeezing effect occurs as the distance between the tip and the sample approaches half the inner radius of the tip. However, through the calculations, the decrease in current density due to the simple reduction in ion channels was found to be much smaller compared to the current squeezing effect measured through actual experiments. This suggests that ion conductivity in nano-scale narrow channels does not simply follow the Nernst-Einstein relationship based on the diffusion coefficients, but also takes into account the fluidic hydrodynamic resistance at the interface created by the tip and the sample. It is expected that SICM can be combined with SECM (Scanning Electrochemical Microscopy) to overcome the limitations of SECM through consecutive measurement of the two techniques, thereby to strengthen the analysis of electrochemical surface reactivity. This could potentially provide groundbreaking help in understanding the local catalytic reactions in electroless plating and the behaviors of organic additives in electroplating for various kinds of patterns used in semiconductor damascene processes and packaging processes.

Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company (소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구)

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.89-105
    • /
    • 2014
  • After emergence of Internet, social media with highly interactive Web 2.0 applications has provided very user friendly means for consumers and companies to communicate with each other. Users have routinely published contents involving their opinions and interests in social media such as blogs, forums, chatting rooms, and discussion boards, and the contents are released real-time in the Internet. For that reason, many researchers and marketers regard social media contents as the source of information for business analytics to develop business insights, and many studies have reported results on mining business intelligence from Social media content. In particular, opinion mining and sentiment analysis, as a technique to extract, classify, understand, and assess the opinions implicit in text contents, are frequently applied into social media content analysis because it emphasizes determining sentiment polarity and extracting authors' opinions. A number of frameworks, methods, techniques and tools have been presented by these researchers. However, we have found some weaknesses from their methods which are often technically complicated and are not sufficiently user-friendly for helping business decisions and planning. In this study, we attempted to formulate a more comprehensive and practical approach to conduct opinion mining with visual deliverables. First, we described the entire cycle of practical opinion mining using Social media content from the initial data gathering stage to the final presentation session. Our proposed approach to opinion mining consists of four phases: collecting, qualifying, analyzing, and visualizing. In the first phase, analysts have to choose target social media. Each target media requires different ways for analysts to gain access. There are open-API, searching tools, DB2DB interface, purchasing contents, and so son. Second phase is pre-processing to generate useful materials for meaningful analysis. If we do not remove garbage data, results of social media analysis will not provide meaningful and useful business insights. To clean social media data, natural language processing techniques should be applied. The next step is the opinion mining phase where the cleansed social media content set is to be analyzed. The qualified data set includes not only user-generated contents but also content identification information such as creation date, author name, user id, content id, hit counts, review or reply, favorite, etc. Depending on the purpose of the analysis, researchers or data analysts can select a suitable mining tool. Topic extraction and buzz analysis are usually related to market trends analysis, while sentiment analysis is utilized to conduct reputation analysis. There are also various applications, such as stock prediction, product recommendation, sales forecasting, and so on. The last phase is visualization and presentation of analysis results. The major focus and purpose of this phase are to explain results of analysis and help users to comprehend its meaning. Therefore, to the extent possible, deliverables from this phase should be made simple, clear and easy to understand, rather than complex and flashy. To illustrate our approach, we conducted a case study on a leading Korean instant noodle company. We targeted the leading company, NS Food, with 66.5% of market share; the firm has kept No. 1 position in the Korean "Ramen" business for several decades. We collected a total of 11,869 pieces of contents including blogs, forum contents and news articles. After collecting social media content data, we generated instant noodle business specific language resources for data manipulation and analysis using natural language processing. In addition, we tried to classify contents in more detail categories such as marketing features, environment, reputation, etc. In those phase, we used free ware software programs such as TM, KoNLP, ggplot2 and plyr packages in R project. As the result, we presented several useful visualization outputs like domain specific lexicons, volume and sentiment graphs, topic word cloud, heat maps, valence tree map, and other visualized images to provide vivid, full-colored examples using open library software packages of the R project. Business actors can quickly detect areas by a swift glance that are weak, strong, positive, negative, quiet or loud. Heat map is able to explain movement of sentiment or volume in categories and time matrix which shows density of color on time periods. Valence tree map, one of the most comprehensive and holistic visualization models, should be very helpful for analysts and decision makers to quickly understand the "big picture" business situation with a hierarchical structure since tree-map can present buzz volume and sentiment with a visualized result in a certain period. This case study offers real-world business insights from market sensing which would demonstrate to practical-minded business users how they can use these types of results for timely decision making in response to on-going changes in the market. We believe our approach can provide practical and reliable guide to opinion mining with visualized results that are immediately useful, not just in food industry but in other industries as well.

Cellular activities of osteoblast-like cells on alkali-treated titanium surface (알칼리 처리된 타이타늄 표면에 대한 골아 유사세포의 세포 활성도)

  • Park, Jin-Woo;Lee, Deog-Hye;Yeo, Shin-Il;Park, Kwang-Bum;Choi, Seok-Kyu;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.sup2
    • /
    • pp.427-445
    • /
    • 2007
  • To improve osseointegration at the boneto-implant interface, several studies have been carried out to modify titanium surface. Variations in surface texture or microtopography may affect the cellular response to an implant. Osteoblast-like cells attach more readily to a rougher titanium surface, and synthesis of extracellular matrix and subsequent mineralization were found to be enhanced on rough or porous coated titanium. However, regarding the effect of roughened surface by physical and mechanical methods, most studies carried out on the reactions of cells to micrometric topography, little work has been performed on the reaction of cells to nanotopography. The purpose of this study was to examme the response of osteoblast-like cell cultured on blasted surfaces and alkali treated surfaces, and to evaluate the influence of surface texture or submicro-scaled surface topography on the cell attachment, cell proliferation and the gene expression of osteoblastic phenotype using ROS 17/2.8 cell lines. In scanning electron micrographs, the blasted, alkali treated and machined surfaces demonstrated microscopic differences in the surface topography. The specimens of alkali treatment had a submicro-scaled porous sur-face with pore size about 200 nm. The blasted surfaces showed irregularities in morphology with small(<10 ${\mu}m$) depression and indentation among flatter-appearing areas of various sizes. Based on profilometry, the blasted surfaces was significantly rougher than the machined and the alkali treated surfaces (p$TiO_2$) were observed on alkali treated surfaces, whereas not observed on machined and blasted surfaces. The attachment morphology of cells according to time was observed by the scanning electron microscope. After 1 hour incubation, the cells were in the process of adhesion and spreading on the prepared surfaces. After 3 hours, the cells on all prepared surfaces were further spreaded and flattened, however on the blasted and alkali treated surfaces, the cells exhibited slightly irregular shapes and some gaps or spaces were seen. After 24 hours incubation, most cells of the all groups had a flattened and polygonal shape, but the cells were more spreaded on the machined surfaces than the blasted and alkali treated surfaces. The MTT assay indicated the increase on machined, alkali treated and blasted surfaces according to time, and the alkali treated and blasted surfaces showed significantly increased in optical density comparing with machined surfaces at 1 day (p<0.01). Gene expression study showed that mRNA expression level of ${\alpha}\;1(I)$ collagen, alkaline phosphatase and osteopontin of the osteoblast-like cells showed a tendency to be higher on blasted and alkali treated surfaces than on the machined surfaces, although no siginificant difference in the mRNA expression level of ${\alpha}\;1(I)$ collagen, alkaline phosphatase and osteopontin was observed among all groups. In conclusion, we suggest that submicroscaled surfaces on osteoblast-like cell response do not over-ride the one of the surface with micro-scaled topography produced by blasting method, although the microscaled and submicro-scaled surfaces can accelerate osteogenic cell attachment and function compared with the machined surfaces.