• Title/Summary/Keyword: Density interface

Search Result 956, Processing Time 0.026 seconds

A THREE DIMENSIONAL LEVEL SET METHOD FOR TWO PHASE FLOWS (Level Set 법을 이용한 삼차원 이상유동 해석에 관한 연구)

  • Kang, D.J.;Ivanova, Ivelina Ivanova
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.126-134
    • /
    • 2008
  • We developed a three dimensional Navier-Stokes code based on the level set method to simulate two phase flows with high density ratio. The Navier-Stokes equations with consideration of the surface tension effects are solved by using SIMPLE algorithm on a non-staggered grid. The present code is validated by simulating two test problems. First one is to simulate a rising bubble inside a cube. The thickness of the interface of the bubble is shown to affect the pressure distribution around the interface. As the thickness decreases, the pressure field around the interface becomes more oscillatory. As the bubble rises, a ring vortex is shown to form around the interface and the bubble eventually develops into an ellipsoidal shape. Merge of two bubbles inside a container is secondly tested to show the robustness of the present code for two phase flow simulation. Numerical results show stable and reliable behavior during the process of merging of two bubbles. The velocity and pressure fields around the interface of bubbles are shown oscillation free during the merging of two bubbles.

Impact of Interface Charges on the Transient Characteristics of 4H-SiC DMOSFETs

  • Kang, Min-Seok;Bahng, Wook;Kim, Nam-Kyun;Ha, Jae-Geun;Koh, Jung-Hyuk;Koo, Sang-Mo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.236-239
    • /
    • 2012
  • In this paper, we study the transient characteristics of 4H-SiC DMOSFETs with different interface charges to improve the turn-on rising time. A physics-based two-dimensional mixed device and circuit simulator was used to understand the relationship between the switching characteristics and the physical device structures. As the $SiO_2$/SiC interface charge increases, the current density is reduced and the switching time is increased, which is due primarily to the lowered channel mobility. The result of the switching performance is shown as a function of the gate-to-source capacitance and the channel resistance. The results show that the switching performance of the 4H-SiC DMOSFET is sensitive to the channel resistance that is affected by the interface charge variations, which suggests that it is essential to reduce the interface charge densities in order to improve the switching speed in 4H-SiC DMOSFETs.

The study of Ca $F_2$ films for gate insulator application (게이트 절연막 응용을 위한 Ca $F_2$ 박막연구)

  • 김도영;최유신;최석원;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.239-242
    • /
    • 1998
  • Ca $F_2$ films have superior gate insulator properties than conventional gate insulator such as $SiO_2$, Si $N_{x}$, $SiO_{x}$, and T $a_2$ $O_{5}$ to the side of lattice mismatch between Si substrate and interface trap charge density( $D_{it}$). Therefore, this material is enable to apply Thin Film Transistor(TFT) gate insulator. Most of gate oxide film have exhibited problems on high trap charge density, interface state in corporation with O-H bond created by mobile hydrogen and oxygen atom. This paper performed Ca $F_2$ property evaluation as MIM, MIS device fabrication. Ca $F_2$ films were deposited at the various substrate temperature using a thermal evaporation. Ca $F_2$ films was grown as polycrystalline film and showed grain size variation as a function of substrate temperature and RTA post-annealing treatment. C-V, I-V results exhibit almost low $D_{it}$(1.8$\times$10$^{11}$ $cm^{-1}$ /le $V^{-1}$ ) and higher $E_{br}$ (>0.87MV/cm) than reported that formerly. Structural analysis indicate that low $D_{it}$ and high $E_{br}$ were caused by low lattice mismatch(6%) and crystal growth direction. Ca $F_2$ as a gate insulator of TFT are presented in this paper paperaper

  • PDF

Seismic Behaviour of Eco-BELT System and Seismic Effectiveness of T-shaped Deadman Considering Soil-Structure Interface Based on Dynamic Numerical Analysis (흙-구조물 접촉면을 고려한 친환경 옹벽 구조물의 지진시 거동 및 T형 후방지지물의 보강효과에 대한 동해석 분석연구)

  • Kwak, Chang-Won;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.8
    • /
    • pp.37-49
    • /
    • 2021
  • A retaining wall system is widely constructed civil structure to maximize the effectiveness of practical use of the land. Recently, the technology which is more eco-friendly and owns seismic stability of the retaining wall system becomes important. In this study, an Eco-BELT system using natural rocks as the front wall is introduced and the seismic characteristics of the Eco-BELT system are analyzed based on 2 and 3 dimensional numerical analysis. The soil-structure interface comprises between backfill soil and natural rocks are considered. The relative density is mainly considered to influence the seismic behavior of Eco-BELT system, and T-shaped deadman is also considered to judge the increase of seismic stability. As a result, lateral displacement of the wall decreases 29.5% in maximum under 90% of relative density and decreases 21.2 to 21.9% with T-shaped deadman, therefore, the seismic effectiveness of T-shaped deadman and increasing relative density of backfill are verified by numerical analysis.

Excitation Temperature and Electron Number Density Measured for End-On-View Indectively Coupled Plasma Discharge

  • Nam, Sang Ho;Kim, Yeong Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.827-832
    • /
    • 2001
  • The excitation temperature and electron number density have been measured for end-on-view ICP discharge. In this work, end-on-view ICP-AES equipped with the newly developed “optical plasma interface (OPI)” was used to eliminate or remove the neg ative effects caused by end-on-plasma source. The axial excitation temperature was measured using analyte (Fe I) emission line data obtained with end-on-view ICP-AES. The axial electron number density was calculated by Saha-Eggert ionization equilibrium theory. In the present study, the effects of forward power, nebulizer gas flow rate and the presence of Na on the excitation temperature and electron number density have been investigated. For sample introduction, two kinds of nebulizers (pneumatic and ultrasonic nebulizer) were utilized.

A Comparison of Various Governing Parameters on Hydrodynamic Stability in Interface on Small Solar Pond (소형태양수구내(小型太陽水構內) 중간경계면(中間境界面)에서 수력학적(水力學的) 안정(安定)에 관(關)한 각종(各種) 지배변수(支配變數)의 비교(比較))

  • Park, Ee-Dong
    • Solar Energy
    • /
    • v.5 no.2
    • /
    • pp.11-19
    • /
    • 1985
  • In this paper, the interface stability not to occur mixing and entrainment between the adjacent layers has been studied in the case of the selective withdrawal of a stratum and the injection in stratified fluid formed by the density difference in a small solar pond. There are stability parameter, Richardson number, Rayleigh number and Froude number as the parameters governing stability in order to measure the interface stability on the stratified fluid. The model which could measure the interface stability on the stratified fluid was the small solar pond composed by 1 meters wide, 2 meters high, and 5 meters long. In order to measure the interface stability on the stratified fluid at the inlet port, the middle section and the outlet port, Richardson number, Rayleigh number, and Froude number involved in the parameters governing the stability were calculated by means of the data resulted from the test of the study on hydrodynamic stability between the convective and nonconvective layers in that solar pond. Richardson number written by the ratio of inertia force to buoyancy force can be used in order to measure the stability on the stratified fluid related to the buoyancy force generated from the injection of fluid. Rayleigh number written by the product of Grashof number by Prandtl number can be used in order to measure the stability of the fluid related to the heat flux and diffusivity of viscosity. Froude number written by the ratio of gravity force to inertia force can be used in order to measure the stability of the nonhomogeneous fluid related to the density difference. As the result of calculating the parameters governing stability, the interface stability on the stratified fluid couldn't be identified below the 70cm height from the bottom of the solar pond, but it could be identified above the 70cm height from it at the inlet port, the middle section and the outlet port. When compared with such the three parameters as Richardson number, Rayleigh number, Froude number, the calculated result was in accord with them at inlet port, the middle section and the outlet port. Henceforth, it is learned that even though any of the three parameters is used for the purpose of measuring the interface stability on the stratified fluid, the result will be the same with them. It is concluded that all the use of Richardson number, Rayleigh number, and Froude number, is desirable and infallible to measure the interface stability on the stratified fluid in the case of considering the exist of the fluid flow and the heat flux like the model of the solar pond.

  • PDF

Effect of Density-of-States (DOS) Parameters on the N-channel SLS Poly-Si TFT Characteristics

  • Ryu, Myung-Kwan;Kim, Eok-Su;Son, Gon;Lee, Jung-Yeal
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.718-722
    • /
    • 2006
  • The dependence of n-channel 2 shot SLS poly-Si TFT characteristics on the DOS (density of states) parameters was investigated by using a device simulation. Device performances were most sensitive to the DOS of poly-Si/gate insulator (GI) interface and poly-Si active layer. Deep level states at the poly-Si/GI interfaces strongly affect the subthreshold slope.

  • PDF

A Study on Calculation of Capacitance Parameter for Interconnection Line in Multilayer Dielectric Media (다층 유전체 매질에서의 Interconnection Line에 대한 Capacitance Parameter 계산에 관한 연구)

  • 김한구;곽계달
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.8
    • /
    • pp.1187-1196
    • /
    • 1989
  • In this paper, a method for computing the capacitance parameter for a multi-interconnection line in a multilayered dielectric region is presented. The number of interconnection lines and the number of dielectric layers are arbitrary, and the interconnection lines are finite cross section or infinite cross section. The surface of lines and dielectric interface are divided into subsection. The surface charge density of each subsection is a constant step-pulse function for each subsection. After the solution of surface charge density is effected by the method of moments, capacitance parameter is calculated.

  • PDF