• Title/Summary/Keyword: Density 전파

Search Result 232, Processing Time 0.03 seconds

Probabilistic estimation of fully coupled blasting pressure transmitted to rock mass II - Estimation of rise time - (암반에 전달된 밀장전 발파입력의 획률론적 예측 II - 최대압력 도달시간 예측을 중심으로 -)

  • Park, Bong-Ki;Lee, In-Mo;Kim, Sang-Gyun;Lee, Sang-Don;Cho, Kook-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.1
    • /
    • pp.25-40
    • /
    • 2004
  • The supersonic shock wave generated by fully coupled explosion will change into subsonic shock wave, plastic wave, and elastic wave consecutively as the wave propagates through rock mass. While the estimation of the blast-induced peak pressure was the main aim of the companion paper, this paper will concentrate on the estimation of the rise time of blast-induced pressure. The rise time can be expressed as a function of explosive density, isentropic exponent, detonation velocity, exponential coefficient of the peak pressure attenuation, dynamic yield stress, plastic wave velocity, elastic wave velocity, rock density, Hugoniot parameters, etc. Parametric analysis was performed to pinpoint the most influential parameter that affects the rise time and it was found that rock properties are more sensitive than explosive properties. The probabilistic distribution of the rise time is evaluated by the Rosenblueth'S point estimate method from the probabilistic distributions of explosive properties and rock properties. Numerical analysis was performed to figure out the effect of rock properties and explosive properties on the uncertainty of blast-induced vibration. Uncertainty analysis showed that uncertainty of rock properties constitutes the main portion of blast-induced vibration uncertainty rather than that of explosive properties. Numerical analysis also showed that the loading rate, which is the ratio of the peak blasting pressure to the rise time, is the main influential factor on blast-induced vibration. The loading rate is again more influenced by rock properties than by explosive properties.

  • PDF

Clustering based Routing Algorithm for Efficient Emergency Messages Transmission in VANET (차량 통신 네트워크에서 효율적인 긴급 메시지 전파를 위한 클러스터링 기반의 라우팅 알고리즘)

  • Kim, Jun-Su;Ryu, Min-Woo;Cha, Si-Ho;Lee, Jong-Eon;Cho, Kuk-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3672-3679
    • /
    • 2012
  • Vehicle Ad hoc Network (VANET) is next-generation network technology to provide various services using V2V (Vehicle-to-Vehicle) and V2I (Vehicle-to-Infrastructure). In VANET, many researchers proposed various studies for the safety of drivers. In particular, using the emergency message to increase the efficiency of traffic safety have been actively studied. In order to efficiently transmit to moving vehicle, to send a quick message to as many nodes is very important via broadcasting belong to communication range of vehicle nodes. However, existing studies have suggested a message for transmission to the communication node through indiscriminate broadcasting and broadcast storm problems, thereby decreasing the overall performance has caused the problem. In addition, theses problems has decreasing performance of overall network in various form of road and high density of vehicle node as urban area. Therefore, this paper proposed Clustering based Routing Algorithm (CBRA) to efficiently transmit emergency message in high density of vehicle as urban area. The CBRA managed moving vehicle via clustering when vehicle transmit emergency messages. In addition, we resolve linkage problem between vehicles according to various form of road. The CBRA resolve link brokage problem according to various form of road as urban using clustering. In addition, we resolve broadcasting storm problem and improving efficacy using selection flooding method. simulation results using ns-2 revealed that the proposed CBRA performs much better than the existing routing protocols.

추적자를 이용한 오염물질 거동분석

  • Kim, Gi-Cheol;Lee, Jong-Seok;Lee, Jae-Cheol;Kim, Yun-Ho;Yeon, Gi-Heum
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.289-293
    • /
    • 2008
  • In this study, in order to find out the movement of polluted substance that is flown into the river and the characteristics of dispersion, the experiment that used the RI (Radio Isotope) tracer in the river was undertaken, and by using the experiment result, the figure modelling was undertaken to analyze the general type of pollutant dispersion. In addition, in order to calculate more accurate dispersion range and moving time, the experiment was done in about 2km from the measuring points of Namdaecheon around the Yongdam Dam of the upper Geum River to the lower stream, and modeling was undertaken for the 20km zone from the measuring points to the lower stream. In order to find out the flow of river and dispersion of polluted substance, RMA (Resource Modeling Associates)-2 and RMA-4 program are used in study. The site experiment using the RI was implemented for the experiment in the applied area and the same area, and the distance between each zone was set for 1㎞ with the slight difference for site situation and measured the density date of one second distance through the NaI apparatus to measure the density data of one second interval. On the basis of this measured data, it is compared and analyzed with the result of figure copy of RMA-2 and RMA-4 models to make the comparison and analysis of density distribution following the change in expansion coefficient that makes great influence on expansion range and dispersion in natural rivers. The influence of expansion coefficient on river can be researched and the measured density data, the maximum and minimum density time, and the basic data to calculate the expansion coefficient was prepared in this study.

  • PDF

A Study on Design Verification of Radio Measurement System for Interplanetary Space (태양-지구 간 공간 전파 관측 시스템 설계 검증)

  • Jeong, Cheol-Oh;Park, Jae-Woo
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.97-101
    • /
    • 2011
  • Interplanetary space between Sun and Earth is area of flowing very fast solar wind which is contained X ray, flare, corona mass, etc. occurred Sun surface to Earth. This solar wind is affected directly to Earth magnetosphere and ionosphere so that this bring out broadcasting and communication interruptions, satellite operation obstacles and power gird defects and etc..Solar wind flow in interplanetary space is measured as solar wind speed, density and direction by measuring scintillation value to be produced during radio source is passed through solar wind. The wider effective collective areas and the more radio sources, accuracy of solar wind measuring is got higher. Function test was performed using 3 tiles which was manufactured as prototype. Restriction of quantity of tiles, test was performed to confirm whether measured beam pattern is complied with requirement or not. In this paper, it is shown design and their specification of ground interplanetary radio measurement system as well as technical issues and resolutions which were raised during design phase. Also result of function verification test using prototype is suggested. It is confirmed that measured beam pattern was met with requirement.

Analysis of Electromagnetic Scattering by Resistive Strip Grating with Zero Resistivity at the Strip-Edges On a Grounded 2 Dielectric Layers (접지된 2개의 유전층위에 저항띠 양끝에서 0으로 변하는 저항띠 격자구조에서의 전자파산란 해석)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.2
    • /
    • pp.152-158
    • /
    • 2006
  • In this paper, electromagnetic scattering problems by a resistive strip grating with zero resistivity at the strip-edges on a grounded 2 dielectric layers according as strip width and spacing, relative permittivity, thickness of dielectric layers, and incident angles of a electric wave are analyzed by applying the FGMM(Fourier-Galerkin Moment Method) known as a numerical procedure. The scattered electromagnetic fields are expanded in a series of floguet mode functions. The boundary conditions are applied to obtain the unknown field coefficients and the resistive boundary condition is used for the relationship between the tangential electric field and the electric current density on the strip. The tapered resistivity of resistive strips varies zero resistivity at strip edges. Then the induced surface current density on the resistive strip is expanded in a series of Chebyshev polynomials of the second kind. The normalized reflected power with zero resistivity in this paper show in good agreement with those of existing paper.

  • PDF

Study on Low Density Parity Check Coded OFDM on Fading channel (페이딩 채널에서 LDPC 부호화 OFDM에 대한 연구)

  • Kang, Hee-Hoon;Lee, Young-Jong;Han, Won-Ok
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.3
    • /
    • pp.51-56
    • /
    • 2005
  • To improve the BER of OFDM on a fading channel, a low-density parity check coded OFDM system is proposed in this paper. LDPC codes are decoded with Sum-Product or Belief Propagation Algorithm known by probability propagation algorithm. When LDPC codes are applied to OFDM system, the BER performance is dependant on the iteration number of decoding. To improve the spectral efficiency, multi-level modulations are used in mobile communication system. But, It is not clear how to decode LDPC code used in OFDM with multi-level modulations. In the paper, a decoding algorithm is described for LDPC coded OFDM with MPSK. When use the proposed decoding algorithm, we get the good BER for AWGN and a Fading Channel. Simulation results show that the proposed decoding algorithm is confirmed LDPC coded OFDM with MPSK.

Q-Switched Nd YAG's SHG conversion techniques for a skin diseased treatment (피부질환 치료를 위한 Q-Switched Nd:YAG의 SHG 변환기술)

  • Kim, Whi-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1141-1149
    • /
    • 2009
  • Pulse style Nd: YAG Laser is suitable in skin remaking treatment, in compliance with the ramp continuous oscillation until of course normal takeoff, the Q-switch and mode motive takeoff the takeoff form which is various is possible and it is coming to be widely used in microsurgery and skin remaking promotion. According to therapeutic objective very it is important to control a energy density. Control of energy density the method which controls the pulse repetition rate of Laser output is mainly used. From the research which it sees pulse style Nd: It will be able to control the pulse repetition rate of YAG, the 2nd harmonic occurrence Laser (second harmonic generation: SHG) with the energy part of the light-wave which is a footnote wave number will hold and nonlinear decision it propagates and is converted by energy of the light-wave which is a footnote wave number the actual condition which and it applies the second harmonic occurrence in compliance with a secondary nonlinearity it leads and until skin deep part therapeutic possibility is the thing it will be able to observe simply.

3D RANS Simulation and the Prediction by CRN Regarding NOx in a Lean Premixed Combustion in a Gas Turbine Combustor (희박 예혼합 가스터빈 연소기 3 차원 전산 해석 및 화학반응기 네트워크에 의한 NOx 예측)

  • Yi, Jae-Bok;Jeong, Dae-Ro;Huh, Kang-Yul;Jin, Jae-Min;Park, Jung-Kyu;Lee, Min-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1257-1264
    • /
    • 2011
  • This paper presents 3D simulation by STAR-CCM+ for lean premixed combustion in a stationary gas turbine combustor with separate pilot and main nozzles. The constant for the source term in the flame area density transport equation was modified to account for a low global equivalence ratio and validated against measurement data. A Partially-premixed Coherent Flame Model(PCFM) involves propagation of a laminar premixed flame with the predicted flame surface density and equilibrium assumption in the burned gas with spatial inhomogeneity. The conditions for cooling by radiation and convection are considered for accurate determination of the heat flux on the wall. A parametric study is of the pilot-fuel-to-total-fuel-ratio is carried out. A chemical reactor network (CRN) was constructed on the basis of the 3D simulation results and compared against measurements of NOx.

Switching Filter using Distribution of Histogram in Salt and Pepper Noise Environments (Salt and Pepper 잡음 환경에서 히스토그램의 분포를 이용한 스위칭 필터)

  • Baek, Ji-Hyeon;Park, Jun-Mo;Kim, Nam-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.3
    • /
    • pp.113-120
    • /
    • 2020
  • With the recent development of communication equipment, the demand for communication equipment is gradually increasing. Accordingly, various signal processing has been studied. In the case of an image, noise removal is an indispensable step because noise propagation problems may occur if noise is not removed in the pre-processing process. Salt and Pepper noise is a typical impulse noise with two extremes. Various studies have been conducted to remove such noise, and there are CWMF, MF and MMF. However, the existing methods are somewhat insufficient in the high-density noise region. Therefore, in this study, we have proposed an algorithm that filters the size of the mask according to the number of noises inside the 7×7 mask and filters it with a modified switching filter using the histogram distribution of the image. In the case of the proposed algorithm, noise can be effectively removed in a high-density noise region. For objective judgment, PSNR was used to compare and analyze with existing algorithms.

Development of Program for Ignition Temperature and Its Applications (발화온도 산출 프로그램 개발 및 적용)

  • Park, Won-Hee;Cho, Youngmim;Kwon, Tae-Soom
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.4
    • /
    • pp.243-250
    • /
    • 2017
  • A fire phenomenon of a solid such as wood involves a phenomenon in which solid is heated from the outside and the gas generated through the thermal pyrolysis process of the material is burnt. The thermal pyrolysis phenomenon of the solid is a phenomenon in which the amount of energy incident from the outside, the amount of heat dissipation of the solid material, the heat transfer between the solid material and the surroundings including the amount of heat transfer to the air adjacent to the solid surface, and the fraction of oxygen in the air. In this paper, we calculate the required ignition temperature to simulate the fire phenomenon as simple as possible. By using cone calorimeter, the ignition time was measured by variously controlling the heat flux flowing into the wood specimen by using various wood specimens. The user friendly program is developed for calculation of the ignition temperature. Five different woods such as low density MDF, high density MDF, plywood, douglas fir and PB with various thickness are considered. The ignition temperatures suggested in this paper can be used for fire propagation analysis for woods.