• 제목/요약/키워드: Densification model

검색결과 79건 처리시간 0.023초

분말 응집체의 치밀화에 관한 모델 (A Model on the Densification of Agglomerates of Powders)

  • 김형섭;이재성
    • 한국분말재료학회지
    • /
    • 제11권4호
    • /
    • pp.301-307
    • /
    • 2004
  • Successful implementation of the powder forming process requires a detailed understanding of several interacting phenomena. The aim is to better control the process variables and to optimize the design parameters. A number of studies were carried out using various constitutive models that take the density change during powder forming into account. Most of them were developed for powders and sintered porous metals, but few of them can describe powder agglomerates, whose behaviour is different from that of uniformly arranged powders. The modification is needed to account for the effect of agglomeration on densification behaviour. Incorporating powder agglomeration into a constitutive model is of considerable importance, as it provides a possibility of relating the powder densification response to microstructural characteristics of powder particles, especially in case of nano powders. In this paper, we proposed a new powder agglomerate model in order to describe the unique densification behaviour of nano powders. The proposed model was applied to the densification of powder agglomerates during cold isostatic pressing.

나노 세라믹 분말의 고온 치밀화와 결정립 성장의 해석 (Analysis for Densification Behavior and Grain Growth of Nanocrystalline Ceramic Powder under High Temperature)

  • 김홍기;김기태
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2749-2761
    • /
    • 2000
  • Densification, grain growth, and phase transformation of nanocrystalline ceramic powder were investigated under pressureless sintering, sinter forging, and hot pressing. A constitutive model for densification of nanocrystalline ceramic powder was proposed and implemented into a finite element program (ABAQUS). A grain growth model was also proposed by including the effect of applied stress on grain growth when phase transformation occurs. Finite element results by using the proposed models well predicted densification behavior, deformation, and grain growth of nanocrystalline titania powder during pressureless sintering, sinter forging, and hot pressing. Finite element results by using the proposed model also well predicted experimental data in the literature for densification behavior of nanocrystalline zirconia powder during pressureless sintering and sinter forging.

임계상대밀도모델을 이용한 마그네슘분말의 압출공정 치밀화 거동 (Analysis of Densification Behavior of Magnesium Powders in Extrusion using the Critical Relative Density Model)

  • 윤승채;채홍준;김택수;김형섭
    • 한국분말재료학회지
    • /
    • 제16권1호
    • /
    • pp.50-55
    • /
    • 2009
  • Numerical simulations of the powder extrusion need an appropriate pressure-dependent constitutive model for densification modeling of the magnesium powders. The present research investigated the effect of representative powder yield function of the critical relative density model. We could obtain reasonable physical properties of pure magnesium powders using cold isostatic pressing. The proposed densification model was implemented into the finite element code. The finite element analysis was applied to simulation of powder extrusion of pure magnesium powder in order to investigate the densification and processing load at room temperature.

냉간 압축 하에서 나노 세라믹 분말의 치밀화 거동 (Densification Behavior of Nanocrystalline Ceramic Powder under Cold Compaction)

  • 이성철;김기태
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1242-1248
    • /
    • 2006
  • Densification behavior of nanocrystalline titania powder was investigated under cold compaction. Experimental data were obtained under triaxial compression with various loading conditions. Lee and Kim proposed the Cap model by developing the parameters involved in the yield function of general Cap model and volumetric strain evolution under cold isostatic pressing. The parameters in the Drucker/Prager Cap model and the proposed model were obtained from experimental data under triaxial compression. Finite element results from the models were compared with experimental data for densification behavior of nanocystalline ceramic powder under cold isostatic pressing and die compaction. The proposed model agreed well with experimental data under cold compaction, but the Drucker/Prager Cap model underestimated at the low density range. Finite element results, also, show the relative density distribution of nanocystalline ceramic powder compacts is severe compared to conventional micron powder compacts with the same averaged relative density.

Densification Kinetics of Steel Powders during Direct Laser Sintering

  • Simchi, Abdolreza;Petzoldt, Frank
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.250-251
    • /
    • 2006
  • It is known that powder characteristics including particle size and distribution, particle shape, and chemical composition are important parameters which influence direct laser sintering of metal powders. In this paper, we introduce a first order kinetics model for densification of steel powders during laser sintering. A densification coefficient (K) is defined which express the potential of different powders to be laser-sintered to a high density dependent on their particle characteristics.

  • PDF

나노 세라믹 분말의 고온 치밀화와 결정립 성장의 해석 (Analysis for Densification Behavior and Grain Growth of Nanocrystalline Ceramic Powder under High Temperature)

  • 김홍기;김기태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.363-368
    • /
    • 2000
  • Densification, grain growth, and phase transformation of nanocrystalline ceramic powder were investigated under pressureless sintering, sinter forging, and hot pressing. A constitutive model for densification of nanocrystalline ceramic powder was proposed and implemented into a finite element program (ABAQUS). A grain growth model was also proposed by including the effect of applied stress on grain growth when phase transformation occurs. Finite element results by using the proposed models well predicted densification behavior, deformation, and grain growth of nanocrystalline titania powder during pressureless sintering, sinter forging, and hot pressing.

  • PDF

알루미나 분말 성형체의 고온 치밀화 성형 공정 해석을 위한 모델 (Model for High Temperature Densification)

  • 권영삼;김기태
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 춘계학술대회 논문집
    • /
    • pp.159-166
    • /
    • 1994
  • A constitutive model was proposed to analyze creep densification and grain growth of alumina powder compacts during high temperature processing. Theoretical results from the constitutive model were compared with various experimental data of alumina powder compacts in the literature including pressureless sintering, sinter forging and hot pressing. The proposed constitutive equations were implemented into finite element analysis program (ABAQUS) to simulate densification for more complicated geometry and loading conditions. High temperature forming processing of alumina compact with complicated shape was simulated. Processing of Alumina Powder Compacts

  • PDF

냉간압축 하에서 지르코니아 분말이 혼합된 알루미늄합금 분말의 치밀화 거동 (Densification Behavior of Aluminum Alloy Powder Mixed with Zirconia Powder Inclusion Under Cold Compaction)

  • 유현석;이성철;김기태
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1324-1331
    • /
    • 2002
  • Densification behavior of composite powders was investigated during cold compaction. Experimental data were obtained for aluminum alloy powder mixed with zirconia powder inclusion under triaxial compression. The Cap model with constraint factors was implemented into a finite element program (ABAQUS) to simulate compaction responses of composite powders during cold compaction. Finite element results were compared with experimental data for densification behavior of composite powders under cold isostatic pressing and die compaction. The agreements between experimental data and finite element calculations from the Cap model with constraint factors were good.

Densification Behavior of Metal and Ceramic Powder under Cold Compaction

  • Lee, Sung-Chul;Kim, Ki-Tae
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.179-180
    • /
    • 2006
  • Densification behavior of various metal and ceramic powder was investigated under cold compaction. The Cap model was proposed based on the parameters obtained from axial and radial deformation of sintered metal powder compacts under uniaxial compression and volumetric strain evolution. For ceramic powder, the parameters were obtained from deformation of green powder compacts under triaxial compression. The Cap model was implemented into a finite element program (ABAQUS) to compare with experimental data for densification behavior of various metal and ceramic powder under cold compaction.

  • PDF

확산과 Power- law 크립을 고려한 압분체 열간정수압압축 공정의 해석 (Analysis of Hot Isostatic Pressing of Powder Compacts Considering Diffusion and Power-Law Creep)

  • 서민홍;김형섭
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.66-69
    • /
    • 2000
  • In order to analyze the densification behaviour of stainless steel powder compacts during hot isostatic pressing (HIP) at elevated temperatures, a power-law creep constitutive model based on the plastic deformation theory for porous materials was applied to the densification. Various densification mechanisms including interparticle boundary diffusion, grain boundary diffusion and lattice diffusion mechanisms were incorporated in the constitutive model, as well. The power-law creep model in conjunction with various diffusion models was applied to the HIP process of 316L stainless steel powder compacts under 50 and 100 MPa at 1125 $!`\acute{\dot{E}}$. The results of the calculations were verified using literature data It could be found that the contribution of the diffusional mechanisms is not significant under the current process conditions.

  • PDF