• Title/Summary/Keyword: Dense (Heavy) gas dispersion model

Search Result 2, Processing Time 0.017 seconds

A Lagrangian Stochastic Model for Dense Gas Dispersion in the Neutrally-stratified Atmospheric Surface Layer (이상적인 중립 대기경계층에서 고밀도가스의 확산예측을 위한 라그랑지안 확률모델)

  • Kim, Byung-Gu;Lee, Changhoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.5
    • /
    • pp.537-545
    • /
    • 2005
  • A new dispersion model for dense gas is constructed in the Lagrangian framework. Prediction of concentration by the proposed model is compared with measure data obtained in the experiment conducted in Thorney Island in 1984. Two major effects of dense gas dispersion, gravity slumping and stratification effect, are successfully incorporated into LDM (Lagrangian dense gas model). Entrainment effect is naturally modelled by introducing stochastic dispersion model with the effect of turbulence suppression by stratification. Not only various releasing conditions but also complex terrain can be extended to, although proposed model is appropriate for flat terrain.

Addition Effect of the Deposition and Buoyancy Terms in Modeling Turbulence Diffusion of Hazardous Air Pollutants (유해 대기오염물질의 난류확산 수치모의에서 침적한과 부력항 추가에 따른 효과)

  • Won, Gyeong-Mee;Lee, Hwa-Woon;Ji, Hyo-Eun;Kim, Cheol-Hee;Song, Chang-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.73-84
    • /
    • 2006
  • Hazardous Air Pollutants (HAPs) are characterized by being relatively heavier and denser than that of ambient air due to the various reasons such as higher molecular weight, low temperature and other complicated chemical transformations (Witlox, 1994). In an effort to investigate transport and diffusion from instantaneous emission of heavy gas, Lagrangian Particle Dispersion Model (LPDM) coupled with the RAMS output was employed. Both deposition process and buoyancy term were added on the atmospheric diffusion equations of LPDM, and the locations and concentrations of dense gas particle released from instantaneous single point source (emitting initially for 10 minutes only) were analyzed. The result overall shows that adding deposition process and buoyancy terms on the diffusion equation of LPDM has very small but detectable effect on the vertical and horizontal distribution of Lagrangian particles that especially transported for a fairly long traveling time. Also the slumping of dense gas can be found to be ignored horizontally compared to the advection by the horizontal wind suggesting that it was essential to couple the Lagrangian particle dispersion model coupled with the RAMS model in order to explain the dispersion of HAPs more accurately. However, during the initial time of instantaneous emission, buoyancy term play an important role on the vertical locations of dense particles for near surface atmosphere and around source area, indicating the importance of densities of HAPs in the beginning stage or short duration for the risk assessment of HAPs or management of heavy vapors during the explosive accidents.