• Title/Summary/Keyword: Demand-Supply chain

Search Result 322, Processing Time 0.026 seconds

Reinforcement leaning based multi-echelon supply chain distribution planning (강화학습 기반의 다단계 공급망 분배계획)

  • Kwon, Ick-Hyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.323-330
    • /
    • 2014
  • Various inventory control theories have tried to modelling and analyzing supply chains by using quantitative methods and characterization of optimal control policies. However, despite of various efforts in this research filed, the existing models cannot afford to be applied to the realistic problems. The most unrealistic assumption for these models is customer demand. Most of previous researches assume that the customer demand is stationary with a known distribution, whereas, in reality, the customer demand is not known a priori and changes over time. In this paper, we propose a reinforcement learning based adaptive echelon base-stock inventory control policy for a multi-stage, serial supply chain with non-stationary customer demand under the service level constraint. Using various simulation experiments, we prove that the proposed inventory control policy can meet the target service level quite well under various experimental environments.

Effective Demand Selection Scheme for Satisfying Target Service Level in a Supply Chain (공급망의 목표 서비스 수준 만족을 위한 효과적인 수요선택 방안)

  • Park, Gi-Tae;Kwon, Ick-Hyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.1
    • /
    • pp.205-211
    • /
    • 2009
  • In reality, distribution planning for a supply chain is established using a certain probabilistic distribution estimated by forecasting. However, in general, the demands used for an actual distribution planning are of deterministic value, a single value for each of periods. Because of this reason the final result of a planning has to be a single value for each period. Unfortunately, it is very difficult to estimate a single value due to the inherent uncertainty in the probabilistic distribution of customer demand. The issue addressed in this paper is the selection of single demand value among of the distributed demand estimations for a period to be used in the distribution planning. This paper proposes an efficient demand selection scheme for minimizing total inventory costs while satisfying target service level under the various experimental conditions.

Comparative Analysis of Game-Theoretic Demand Allocation for Enhancing Profitability of Whole Supply Chain (전체 공급망 수익성 개선을 위한 게임이론 기반의 수요 할당 메커니즘의 비교 연구)

  • Shin, Kwang Sup
    • The Journal of Society for e-Business Studies
    • /
    • v.19 no.1
    • /
    • pp.43-61
    • /
    • 2014
  • This research is an application of game theory to developing the supplier selection and demand allocation mechanism, which are the essential and major research areas of supply chain planning and operation. In this research, the most popular and widely accepted mechanism, the progressive reverse auction is analyzed and compared with the other game theoretic approach, Kalai-Smorodinsky Bargaining Solution in the viewpoint of holistic efficiency of supply chain operation. To logically and exquisitely compare the efficiencies, a heuristic algorithm based on Genetic Algorithm is devised to find the other optimal demand allocation plan. A well known metric, profit-cost ratio, as well as profit functions for both suppliers and buyer has been designed for evaluating the overall profitability of supply chain. The experimental results with synthesis data and supply chain model which were made to mimic practical supply chain are illustrated and analyzed to show how the proposed approach can enhance the profitability of supply chain planning. Based on the result, it can be said that the proposed mechanism using bargainging solution mayguarantee the better profitability for the whole supply chin including both suppliers and buyer, even though quite small portion of buyer's profitability should be sacrified.

An Effective Lateral Transshipment Policy to Improve the Service Level in the Supply Chain (공급사슬의 서비스 개선을 위한 효과적인 Lateral transshipment 정책)

  • Jeon Young Sang;Lee Young Hae;Jung Jung Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.1
    • /
    • pp.17-26
    • /
    • 2005
  • There is the uncertainty of demands at each retailer in the supply chain. To satisfy customers' demand, retailer must have enough inventory. Nevertheless, stockout is occurred for some retailers. A lateral transshipment policy can be effectively used to deal with stockout. The new lateral transshipment policy, referred to service level adjustment (SLA), is suggested. The difference between SLA and previous policies is the integration of an emergency lateral 'transshipment with a preventive lateral transshipment to efficiently respond customers' demand in the proposed policy. Additionally, the service level to decide the quantity of products is considered. Simulation experiment is executed to treat stochastic factors in the two-echelon supply chain. The proposed policy can reduce total cost and is more effective to the change of demand, penalty cost, and ordering cost than the currently used policies.

Which Node of Supply Chain Suffers Mostly to Disruption in the Pandemic?

  • NGUYEN, Tram Thi Bich
    • Journal of Distribution Science
    • /
    • v.19 no.11
    • /
    • pp.59-68
    • /
    • 2021
  • Purpose: The Covid-19 pandemic has had excessively severe impacts on all the nodes and edges of any supply chain due to changes in consumer behaviours and lockdown restrictions from governments among countries. This article aims to provide a simulating experiment on how a supply chain deals with supply disruption risks by flexibility in the inventory level of each sector as a buffer considering the overall cost to fulfil demand in the market. Research design, data and methodology: Agent-based simulation techniques are used to determine the cost-efficiency and customer waiting time related to varying inventory levels of each member in the supply chain when using inventory buffers. Findings: This study has shown that any sudden changes in the inventory level of each sector are likely to impact the rest of the supply chain. Among all sectors, the wholesaler will be impacted more severely than others. Also, the manufacturing sector is the most suitable node to adjust inventory depending on its manufacturing ability. Conclusion: The findings of the study provide insightful implications for decision-makers to adjust inventory levels and policymakers to maintain manufacturing activities in the context of the pandemic restrictions to deal with the excessive demand and potential supply disruption risks.

Supply Chain Coordination in 2-Stage-Ordering-Production System with Update of Demand Information

  • Kusukawa, Etsuko
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.3
    • /
    • pp.304-318
    • /
    • 2014
  • It is necessary for a retailer to improve responsiveness to uncertain customer demand in product sales. In order to solve this problem, this paper discusses an optimal operation for a 2-stage-ordering-production system consisting of a retailer and a manufacturer. First, based on the demand information estimated at first order time $t_1$, the retailer determines the optimal initial order quantity $Q^*_1$, the optimal advertising cost $a^*_1$ and the optimal retail price $p^*_1$ of a single product at $t_1$, and then the manufacturer produces $Q^*_1$. Next, the retailer updates the demand information at second order time $t_2$. If the retailer finds that $Q^*_1$ dissatisfies the demand indicated by the demand information updated at $t_2$, the retailer determines the optimal second order quantity $Q^*_2$ under $Q^*_1$ and adjusts optimally the advertising cost and the retail price to $a^*_2$ and $p^*_2$ at $t_2$. Here, decision-making approaches for two situations are made-a decentralized supply chain (DSC) whose objective is to maximize the retailer's profit and an integrated supply chain (ISC) whose objective is to maximize the whole system's profit. In the numerical analysis, the results of the optimal decisions under DSC are compared with those under ISC. In addition, supply chain coordination is discussed to adjust the unit wholesale price at each order time as Nash Bargaining solutions.

Analysis of Lead Time Distribution with Order Crossover (교차주문을 갖는 리드타임 분포의 분석)

  • Kim, Gitae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.220-226
    • /
    • 2021
  • In supply chain, there are a variety of different uncertainties including demand, service time, lead time, and so forth. The uncertainty of demand has been commonly studied by researchers or practitioners in the field of supply chain. However, the uncertainty of upstream supply chain has also increased. A problem of uncertainty in the upstream supply chain is the fluctuation of the lead time. The stochastic lead time sometimes causes to happen so called the order crossover which is not the same sequences of the order placed and the order arrived. When the order crossover happens, ordinary inventory policies have difficult to find the optimal inventory solutions. In this research, we investigate the lead time distribution in case of the order crossover and explore the resolutions of the inventory solution with the order crossover.

The Impact of COVID 19 on the Meat Supply Chain in the USA: A Review

  • Whitehead, Dalton;Kim, Yuan H. Brad
    • Food Science of Animal Resources
    • /
    • v.42 no.5
    • /
    • pp.762-774
    • /
    • 2022
  • The COVID 19 pandemic resulted in a considerable influence on the world economy. Being a big sector of the economy, the food supply chain struggled. The meat supply chain was most notably affected as every part of the supply chain from farm to shelf was closely inter-related. With the closure of businesses and restaurants the demand for at home food from grocery stores increased. Meat production facilities were impacted when the virus spread to the workers causing facilities to close or line speeds to slow. The combination of these two issues, in turn, led to there being less meat on the shelves. With less meat animals being harvested, there was less demand for livestock leading to farmers having an excess in slaughter ready animals. The decreased demand for livestock led to economic issues as money was lost in multiple sections of the supply chain. Aside from the economy and supply chain issues, other issues include concerns over the safety of meat products due to decreased safety protocols to increase line speed. Additionally, concerns of animal welfare with the excess of animals being culled were raised due to decreased capacity in processing facilities. While this review paper mainly focuses on characterizing the impact of COVID 19 on the meat supply chain in the USA, the compiled information should be able to provide practical insights to the meat/food industry across the globe to develop potential mitigating strategies against the COVID 19 and/or any similar pandemic incidences in the future.

Managing Inventories of Brand-New and Recovered Products in a Reverse Supply Chain with Downward Demand Substitution (하방 수요 대체가 허용되는 역공급망에서 신제품 및 재생제품 재고 관리)

  • Kim, Eungab
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.2
    • /
    • pp.97-109
    • /
    • 2014
  • This paper considers a reverse supply chain with simultaneous recovery of used products and manufacturing of brand-new ones. Recovered products are downgraded and have to be sold in a market different from that of brand-new products at a different price. In case of a shortage of recovered product inventory, a brand-new item, if available, can be offered at the price of a recovered product. In other words, one-way demand substitution is allowed. We address the joint decision of when to manufacture brand-new product, when to recover returned product, and how to control demand substitution to maximize the hybrid production system's profits. To this end, we propose a Markov decision Process model and investigate the structure of the optimal policy. Performance comparison is numerically implemented between the models with and without downward demand substitution option under different operating conditions of the system parameters.

A Comparative Case Study on Supply Chain Management and Strategy of Global Semiconductor Companies (글로벌 반도체기업들의 공급체인 관리와 전략에 대한 비교사례 연구)

  • Kwun, Young-Hwa
    • International Area Studies Review
    • /
    • v.20 no.4
    • /
    • pp.91-119
    • /
    • 2016
  • As the 4th industry is introduced these days, so the demand of various semiconductors is growing in the market. And global semiconductor companies in semiconductor industry are responding to this demand by facilitating innovation. Meanwhile, there has been done many studies regarding supply chain for a long time. And the study of supply chain in semiconductor industry has often been carried out until now. But there were no enough case studies regarding the supply chain of semiconductor company. Therefore, this study carried out a comparative case study for global semiconductor companies' supply chain and compared each companies' supply chain management and strategy. In conclusion, all the companies are executing supply chain management in an aggressive, systematic and organized way, and there were a lot of similarities and a few differences among these companies in supply chain management. Furthermore, each company has a unique way for supply chain strategy. Lastly, this study suggested some messages which are helpful for their supply chain strategy.