• Title/Summary/Keyword: Demand Forecasting Model

Search Result 461, Processing Time 0.024 seconds

An Estimation on the Market Size of Aqua-cultured Flatfish in Korea (양식 넙치 중장기 시장 규모 추정)

  • Kim, Bae-Sung;Kim, Chung-Hyeon;Cho, Jae-Hwan;Lee, Nam-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7781-7787
    • /
    • 2015
  • The purpose of This paper is to address the development on supply-demand outlook model of aqua-cultured korean Flatfish and introduces a projection of supply-demand and market prices during 2015-2017 using developed model. The supply-demand outlook model is composed as a partial equilibrium model of Korean Flat fish. Each equation in the model is estimated by the econometric techniques. A reviews of the demand-outlook model stability is also carried out by the references based on RMSPE. MAPE, and Theil's inequality coefficients. According to the reference of RMSPE, the error rates of the forecasting values of the aqua culture area, culturing quantity, production quantity, market price show less than 4%, The production quantity and farm price are predicted respectively to be 42,561MT and 10,191KW per kg in 2017.

An Empirical Study on Aircraft Repair Parts Prediction Model Using Machine Learning (머신러닝을 이용한 항공기 수리부속 예측 모델의 실증적 연구)

  • Lee, Chang-Ho;Kim, Woong-Yi;Choi, Youn-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.4
    • /
    • pp.101-109
    • /
    • 2018
  • In order to predict the future needs of the aircraft repair parts, each military group develops and applies various techniques to their characteristics. However, the aircraft and the equipped weapon systems are becoming increasingly advanced, and there is a problem in improving the hit rate by applying the existing demand prediction technique due to the change of the aircraft condition according to the long term operation of the aircraft. In this study, we propose a new prediction model based on the conventional time-series analysis technique to improve the prediction accuracy of aircraft repair parts by using machine learning model. And we show the most effective predictive method by demonstrating the change of hit rate based on actual data.

A Study on the Demand Forecasting of Healthcare Technology from a Consumer Perspective : Using Social Data and ARIMA Model Approach (소셜데이터 및 ARIMA 분석을 활용한 소비자 관점의 헬스케어 기술수요 예측 연구)

  • Yang, Dong Won;Lee, Zoon Ky
    • Journal of Information Technology Services
    • /
    • v.19 no.4
    • /
    • pp.49-61
    • /
    • 2020
  • Prior studies on technology predictions attempted to predict the emergence and spread of emerging technologies through the analysis of correlations and changes between data using objective data such as patents and research papers. Most of the previous studies predicted future technologies only from the viewpoint of technology development. Therefore, this study intends to conduct technical forecasting from the perspective of the consumer by using keyword search frequency of search portals such as NAVER before and after the introduction of emerging technologies. In this study, we analyzed healthcare technologies into three types : measurement technology, platform technology, and remote service technology. And for the keyword analysis on the healthcare, we converted the classification of technology perspective into the keyword classification of consumer perspective. (Blood pressure and blood sugar, healthcare diagnosis, appointment and prescription, and remote diagnosis and prescription) Naver Trend is used to analyze keyword trends from a consumer perspective. We also used the ARIMA model as a technology prediction model. Analyzing the search frequency (Naver trend) over 44 months, the final ARIMA models that can predict three types of healthcare technology keyword trends were estimated as "ARIMA (1,2,1) (1,0,0)", "ARIMA (0,1,0) (1,0,0)", "ARIMA (1,1,0) (0,0,0)". In addition, it was confirmed that the values predicted by the time series prediction model and the actual values for 44 months were moving in almost similar patterns in all intervals. Therefore, we can confirm that this time series prediction model for healthcare technology is very suitable.

Double Encoder-Decoder Model for Improving the Accuracy of the Electricity Consumption Prediction in Manufacturing (제조업 전력량 예측 정확성 향상을 위한 Double Encoder-Decoder 모델)

  • Cho, Yeongchang;Go, Byung Gill;Sung, Jong Hoon;Cho, Yeong Sik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.12
    • /
    • pp.419-430
    • /
    • 2020
  • This paper investigated methods to improve the forecasting accuracy of the electricity consumption prediction model. Currently, the demand for electricity has continuously been rising more than ever. Since the industrial sector uses more electricity than any other sectors, the importance of a more precise forecasting model for manufacturing sites has been highlighted to lower the excess energy production. We propose a double encoder-decoder model, which uses two separate encoders and one decoder, in order to adapt both long-term and short-term data for better forecasts. We evaluated our proposed model on our electricity power consumption dataset, which was collected in a manufacturing site of Sehong from January 1st, 2019 to June 30th, 2019 with 1 minute time interval. From the experiment, the double encoder-decoder model marked about 10% reduction in mean absolute error percentage compared to a conventional encoder-decoder model. This result indicates that the proposed model forecasts electricity consumption more accurately on manufacturing sites compared to an encoder-decoder model.

A Choice-Based Competitive Diffusion Model with Applications to Mobile Telecommunication Service Market in Korea (선택관점의 경쟁확산모형과 국내 이동전화 서비스 시장에의 응용)

  • Jun, Duk-Bin;Kim, Seon-Kyoung;Cha, Kyung-Cheon;Park, Yoon-Seo;Park, Myoung-Hwan;Park, Young-Sun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.3
    • /
    • pp.267-273
    • /
    • 2001
  • While forecasting sales of a new product is very difficult, it is critical to market success. This is especially true when other products have a highly negative influence on the product because of competition effect. In this paper, we develop a choice-based competitive diffusion model and apply to the case where two digital mobile telecommunication services, that is, digital cellular and PCS services, compete. The basic premise is that demand patterns result from choice behavior, where customers choose a product to maximize their utility. In comparison with Bass-type competitive diffusion models, our model provides superior fitting and forecasting performance. The choice-based model is useful in that it enables the description of such competitive environments and provides the flexibility to include marketing mix variables such as price and advertising.

  • PDF

Quantitative Estimation of Firm's Risk from Supply Chain Perspective (공급사슬 관점에서 기업 위험의 계량적 추정)

  • Park, Keun-Young;Han, Hyun-Soo
    • Journal of Information Technology Applications and Management
    • /
    • v.22 no.2
    • /
    • pp.201-217
    • /
    • 2015
  • In this paper, we report computational testing result to examine the validity of firm's bankruptcy risk estimation through quantification of supply chain risk. Supply chain risk in this study refers to upstream supply risk and downstream demand risk, To assess the firm's risk affected by supply chain risk, we adopt unit of analysis as industry level. since supply and demand relationships of the firm could be generalized by the industry input-output table and the availability of various valid economic indicators which are chronologically calculated. The research model to estimate firm's risk level is the linear regression model to assess the industry bankruptcy risk estimation of the focal firm's industry with the independent variables which could quantitatively reflect demand and supply risk of the industry. The publicly announced macro economic indicators are selected as the candidate independent variables and validated through empirical testing. To validate our approach, in this paper, we confined our research scope to steel industry sector and its related industry sectors, and implemented the research model. The empirical testing results provide useful insights to further refine the research model as the valid forecasting mechanism to capture firm's future risk estimation more accurately by adopting supply chain industry risk aspect, in conjunction with firm's financial and other managerial factors.

Forecasting of Foreign Tourism demand in Kyeongju (경주지역 외국인 관광수요 예측)

  • Son, Eun Ho;Park, Duk Byeong
    • Journal of Agricultural Extension & Community Development
    • /
    • v.20 no.2
    • /
    • pp.511-533
    • /
    • 2013
  • The study used a seasonal ARIMA model to forecast the number of tourists to Kyeongju foreign in a uni-variable time series. Time series monthly data for the investigation were collected ranging from 1995 to 2010. A total of 192 observations were used for data analysis. The date showed that a big difference existed between on-season and off-season of the number of foreign tourists in Kyeongju. In the forecast multiplicative seasonal ARIMA(1,1,0) $(4,0,0)_{12}$ model was found the most appropriate model. Results show that the number of tourists was 694 thousands in 2011, 715 thousands in 2012, 725 thousands in 2013, 738 thousands in 2014, and 884 thousands in 2015. It was suggested that the grasping of the Kyeongju forecast model was very important in respect of how experts in tourism development, policy makers or planners would establish marketing strategies to allocate services in Kyeongju as a tourist destination and provide tourism facilities efficiently.

An LSTM Neural Network Model for Forecasting Daily Peak Electric Load of EV Charging Stations (EV 충전소의 일별 최대전력부하 예측을 위한 LSTM 신경망 모델)

  • Lee, Haesung;Lee, Byungsung;Ahn, Hyun
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.119-127
    • /
    • 2020
  • As the electric vehicle (EV) market in South Korea grows, it is required to expand charging facilities to respond to rapidly increasing EV charging demand. In order to conduct a comprehensive facility planning, it is necessary to forecast future demand for electricity and systematically analyze the impact on the load capacity of facilities based on this. In this paper, we design and develop a Long Short-Term Memory (LSTM) neural network model that predicts the daily peak electric load at each charging station using the EV charging data of KEPCO. First, we obtain refined data through data preprocessing and outlier removal. Next, our model is trained by extracting daily features per charging station and constructing a training set. Finally, our model is verified through performance analysis using a test set for each charging station type, and the limitations of our model are discussed.

Nonlinear impact of temperature change on electricity demand: estimation and prediction using partial linear model (기온변화가 전력수요에 미치는 비선형적 영향: 부분선형모형을 이용한 추정과 예측)

  • Park, Jiwon;Seo, Byeongseon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.5
    • /
    • pp.703-720
    • /
    • 2019
  • The influence of temperature on electricity demand is increasing due to extreme weather and climate change, and the climate impacts involves nonlinearity, asymmetry and complexity. Considering changes in government energy policy and the development of the fourth industrial revolution, it is important to assess the climate effect more accurately for stable management of electricity supply and demand. This study aims to analyze the effect of temperature change on electricity demand using the partial linear model. The main results obtained using the time-unit high frequency data for meteorological variables and electricity consumption are as follows. Estimation results show that the relationship between temperature change and electricity demand involves complexity, nonlinearity and asymmetry, which reflects the nonlinear effect of extreme weather. The prediction accuracy of in-sample and out-of-sample electricity forecasting using the partial linear model evidences better predictive accuracy than the conventional model based on the heating and cooling degree days. Diebold-Mariano test confirms significance of the predictive accuracy of the partial linear model.

Analysis of Automobile Industry Trends and Demand Forecasting of Monthly Automobile Sales in Chin (중국 내 자동차 산업 동향과 월별 판매량 시계열분석)

  • Chenyang, Wang;Se Won, Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.1
    • /
    • pp.35-48
    • /
    • 2023
  • In this study, we introduced the development status and the government policy of the Chinese automobile industry under the rapidly changing global economic environment. We conducted a consumer trend survey on automobile purchases by consumers in China. Despite the Chinese government's strong national emission control policy and stricter standards for manufacturing and selling internal combustion engine vehicles, 59.6% of respondents saying they would choose an internal combustion engine vehicle when purchasing a vehicle in the future for various reasons. It was confirmed that there is a significant gap between government policies and consumer perceptions. In addition, we have discovered the recent declining trend of automobile sales in China, and used the monthly sales volume from January 2010 to December 2020 as training set, and the sales volume from January 2021 to November 2022 as a test set. We proposed and evaluated a time-series model for predicting future automobile demand in China. Then, we showed the monthly sales forecast for 2023 when each model was applied.