• Title/Summary/Keyword: Demand Forecasting Model

Search Result 461, Processing Time 0.022 seconds

Application of SARIMA Model in Air Cargo Demand Forecasting: Focussing on Incheon-North America Routes (항공화물수요예측에서 계절 ARIMA모형 적용에 관한 연구: 인천국제공항발 미주항공노선을 중심으로)

  • SUH, Bo Hyoun;YANG, Tae Woong;HA, Hun-Koo
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.2
    • /
    • pp.143-159
    • /
    • 2017
  • For forecasting air cargo demand from Incheon National Airport to all of airports in the United States (US), this study employed the Seasonal Autoregressive Integrated Moving Average (SARIMA) method and the time-series data collected from the first quarter of 2003 to the second quarter of 2016. By comparing the SARIMA method against the ARIMA method, it was found that the SARIMA method performs well, relatively with time series data highlighting seasonal periodic characteristics. While existing previous research was generally focused on the air passenger and the air cargo as a whole rather than specific air routes, this study emphasized on a specific air cargo demand to the US route. The meaningful findings would support the future research.

Frequency Forecasting Model for Next Wireless Multimedia Services (멀티미디어 이동통신서비스를 위한 주파수 수요예측 모형)

  • Jang, Hee-Seon;Han, Sung-Su;Yeo, Jae-Hyun;Choi, Sung-Ho
    • IE interfaces
    • /
    • v.18 no.3
    • /
    • pp.333-342
    • /
    • 2005
  • In this paper, we propose an efficient forecasting methodology of the mid and long-term frequency demand in Korea. The methodology consists of the following three steps: classification of basic service group, calculation of effective traffic, and frequency forecasting. Based on the previous studies, we classify the services into wide area mobile, short range radio, fixed wireless access and digital video broadcasting in the step of the classification of basic service group. For the calculation of effective traffic, we use the measures of erlang and bps. The step of the calculation of effective traffic classifies the user and basic application, and evaluates the effective traffic. Finally, in the step of frequency forecasting, different methodology will be proposed for each service group and its applications are presented.

Forecasting Hourly Demand of City Gas in Korea (국내 도시가스의 시간대별 수요 예측)

  • Han, Jung-Hee;Lee, Geun-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.87-95
    • /
    • 2016
  • This study examined the characteristics of the hourly demand of city gas in Korea and proposed multiple regression models to obtain precise estimates of the hourly demand of city gas. Forecasting the hourly demand of city gas with accuracy is essential in terms of safety and cost. If underestimated, the pipeline pressure needs to be increased sharply to meet the demand, when safety matters. In the opposite case, unnecessary inventory and operation costs are incurred. Data analysis showed that the hourly demand of city gas has a very high autocorrelation and that the 24-hour demand pattern of a day follows the previous 24-hour demand pattern of the same day. That is, there is a weekly cycle pattern. In addition, some conditions that temperature affects the hourly demand level were found. That is, the absolute value of the correlation coefficient between the hourly demand and temperature is about 0.853 on average, while the absolute value of the correlation coefficient on a specific day improves to 0.861 at worst and 0.965 at best. Based on this analysis, this paper proposes a multiple regression model incorporating the hourly demand ahead of 24 hours and the hourly demand ahead of 168 hours, and another multiple regression model with temperature as an additional independent variable. To show the performance of the proposed models, computational experiments were carried out using real data of the domestic city gas demand from 2009 to 2013. The test results showed that the first regression model exhibits a forecasting accuracy of MAPE (Mean Absolute Percentage Error) around 4.5% over the past five years from 2009 to 2013, while the second regression model exhibits 5.13% of MAPE for the same period.

Intelligent System Predictor using Virtual Neural Predictive Model

  • 박상민
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.03a
    • /
    • pp.101-105
    • /
    • 1998
  • A large system predictor, which can perform prediction of sales trend in a huge number of distribution centers, is presented using neural predictive model. There are 20,000 number of distribution centers, and each distribution center need to forecast future demand in order to establish a reasonable inventory policy. Therefore, the number of forecasting models corresponds to the number of distribution centers, which is not possible to estimate that kind of huge number of accurate models in ERP (Enterprise Resource Planning)module. Multilayer neural net as universal approximation is employed for fitting the prediction model. In order to improve prediction accuracy, a sequential simulation procedure is performed to get appropriate network structure and also to improve forecasting accuracy. The proposed simulation procedure includes neural structure identification and virtual predictive model generation. The predictive model generation consists of generating virtual signals and estimating predictive model. The virtual predictive model plays a key role in tuning the real model by absorbing the real model errors. The complement approach, based on real and virtual model, could forecast the future demands of various distribution centers.

  • PDF

A Parameter Estimation of Bass Diffusion Model by the Hybrid of NLS and OLS (NLS와 OLS의 하이브리드 방법에 의한 Bass 확산모형의 모수추정)

  • Hong, Jung-Sik;Kim, Tae-Gu;Koo, Hoon-Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.1
    • /
    • pp.74-82
    • /
    • 2011
  • The Bass model is a cornerstone in diffusion theory which is used for forecasting demand of durables or new services. Three well-known estimation methods for parameters of the Bass model are Ordinary Least Square (OLS), Maximum Likelihood Estimator (MLE), Nonlinear Least Square (NLS). In this paper, a hybrid method incorporating OLS and NLS is presented and it's performance is analyzed and compared with OLS and NLS by using simulation data and empirical data. The results show that NLS has the best performance in terms of accuracy and our hybrid method has the best performance in terms of stability. Specifically, hybrid method has better performance with less data. This result means much in practical aspect because the avaliable data is little when a diffusion model is used for forecasting demand of a new product.

Development of a System Dynamics Model for Forecasting the Automobile Market (시스템다이내믹스 기법을 활용한 차급별 월간 자동차 수요 예측 모델 개발)

  • 곽상만;김기찬;안수웅;장원혁;홍정석
    • Korean System Dynamics Review
    • /
    • v.3 no.1
    • /
    • pp.79-104
    • /
    • 2002
  • A system dynamics project is going on for forecasting automobile market in Korea. The project is made up of three stages, and the first stage has been wrapped up. As the first attempt, most efforts have been focused on the sound foundation rather than the exact forecast. The model consists of three sectors; the supply sector, the demand sector, and the population sector. The supply sector is a simple stock and flow diagrams representing the supply capacities of all automobile types. The major effort is made on the demand sector and the population sector. The demands are divided into three categories; replacement demands, new demands, and additional demands. The model applies “one car per person" concept, and assumes there will be no additional demands for a while. The replacement demands are calculated based on a simple stock and flow diagram. The new demands are calculated via Bass models; each bass model represents a diffusion for each age group. The population is divided into 101 age groups (age 0 to age 100). The model has been calibrated with past 10 year data (1990 - 1999), and tested for the next two years (2000-2001). The results ware acceptable, although a fine tuning is required. Now the second stage is going on, and most of efforts are made how to incorporate the economic and cultural factors.

  • PDF

New Electricity Load Model (새로운 전력 부하모형)

  • Kim, Joo-Hak;Choi, Joon-Young;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.289-291
    • /
    • 2000
  • In a competitive electricity power market, the price of electricity changes instantly, that of conventional market is predetermined and hardly changes. In such a new environment, customers' behaviors change instantly according to the changing electricity prices. If we develop a electricity load model that well describes the behavior of electricity consumers, we can utilize that model in forecasting the amount of future load, solving the load flow problem and finding the weak point of the system. In this paper new electricity model that considers the price of electricity and power factor of the load is presented. While conventional load model, which is demand function of electricity, uses the price of real and reactive power as the independent variable of the demand function. this new load model uses price of real power and penalty factor according to the power factor for the calculation of amount of electricity demand.

  • PDF

Water Demand Forecasting by Characteristics of City Using Principal Component and Cluster Analyses

  • Choi, Tae-Ho;Kwon, O-Eun;Koo, Ja-Yong
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.135-140
    • /
    • 2010
  • With the various urban characteristics of each city, the existing water demand prediction, which uses average liter per capita day, cannot be used to achieve an accurate prediction as it fails to consider several variables. Thus, this study considered social and industrial factors of 164 local cities, in addition to population and other directly influential factors, and used main substance and cluster analyses to develop a more efficient water demand prediction model that considers unique localities of each city. After clustering, a multiple regression model was developed that proved that the $R^2$ value of the inclusive multiple regression model was 0.59; whereas, those of Clusters A and B were 0.62 and 0.74, respectively. Thus, the multiple regression model was considered more reasonable and valid than the inclusive multiple regression model. In summary, the water demand prediction model using principal component and cluster analyses as the standards to classify localities has a better modification coefficient than that of the inclusive multiple regression model, which does not consider localities.

An application of the Computer Simulation Model for Stochastic Inventory System (최적재고정책(最適在庫政策)을 위한 컴퓨터 시물레이숀 모델)

  • Sin, Hyeon-Pyo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.2 no.1
    • /
    • pp.79-83
    • /
    • 1976
  • This paper deals with a computer simulation for the stochastic inventory system in which the decision rules are associated with the problem of forecasting uncertain demand, lead time, and amount of shortages. The model consists of mainly three parts; part I$\cdots$the model calculates the expected demand during lead time through the built-in subrou tine program for random number generator and the probability distribution of the demand, part II$\cdots$the model calculates all the possible expected shortages per lead time period, part III$\cdots$finally the model calculates all the possible total inventory cost over the simulation period. These total inventory costs are compared for searching the optimal inventory cost with the best ordering quantity and reorder point. An application example of the simulation program is given.

  • PDF

An Energy Demand Forecasting Model for the Residential and Commercial Sector (민수부문의 에너지원별 수요예측모형)

  • 유병우
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.8 no.2
    • /
    • pp.45-56
    • /
    • 1983
  • This paper presents a generalized fuel choice model in which restrictive constraints on cross-price coefficients as Baughman-Joskow-FEA Logit Model need not be imposed, but all demand elasticities are uniquely determined. The model is applied to estimating aggregate energy demand and fuel choices for the residential and commercial sector. The structural equations are estimated by a generalized least squares procedure using national-level EPB, KDI, BK, KRIS, MOER data for 1965 and 1980, and other related reports. The econometric results support the argument that “third-price” and “fourth-price” coefficients should not be constrained in estimating relative market share models. Furthermore, by using this fuel choice model, it has forecasted energy demands by fuel sources in, the residential and commercial sector until 1991. The results are turned out good estimates to compare with existing demands forecasted from other institutes.

  • PDF