• Title/Summary/Keyword: Demand Forecasting Model

Search Result 461, Processing Time 0.027 seconds

Airline In-flight Meal Demand Forecasting with Neural Networks and Time Series Models

  • Lee, Young-Chan
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • 2000.11a
    • /
    • pp.36-44
    • /
    • 2000
  • The purpose of this study is to introduce a more efficient forecasting technique, which could help result the reduction of cost in removing the waste of airline in-flight meals. We will use a neural network approach known to many researchers as the “Outstanding Forecasting Technique”. We employed a multi-layer perceptron neural network using a backpropagation algorithm. We also suggested using other related information to improve the forecasting performances of neural networks. We divided the data into three sets, which are training data set, cross validation data set, and test data set. Time lag variables are still employed in our model according to the general view of time series forecasting. We measured the accuracy of our model by “Mean Square Error”(MSE). The suggested model proved most excellent in serving economy class in-flight meals. Forecasting the exact amount of meals needed for each airline could reduce the waste of meals and therefore, lead to the reduction of cost. Better yet, it could enhance the cost competition of each airline, keep the schedules on time, and lead to better service.

  • PDF

A Study on increasing the fitness of forecasts using Dynamic Model (동적 모형에 의한 예측치의 정도 향상에 관한 연구)

  • 윤석환;윤상원;신용백
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.40
    • /
    • pp.1-14
    • /
    • 1996
  • We develop a dynamic demand forecasting model compared to regression analysis model and AutoRegressive Integrated Moving Average(ARIMA) model. The dynamic model can apply to the current dynamic data to forecasts through introducing state equation. A multiple regression model and ARIMA model using given data are designed via the model analysis. The forecasting fitness evaluation between the designed models and the dynamic model is compared with the criterion of sum of squared error.

  • PDF

Analyzing the Supply and Demand Structure of the Korean Flatfish Aquaculture Market : A System Dynamics Approach (시스템다이내믹스기법을 이용한 우리나라 양식넙치시장의 수급구조 분석)

  • Park, Byung-In
    • The Journal of Fisheries Business Administration
    • /
    • v.39 no.1
    • /
    • pp.17-42
    • /
    • 2008
  • This study tried to build a structure model for the Korean flatfish aquaculture market by a system dynamics approach. A pool of several factors to influence the market structure was built. In addition, several reasonable factors related to the flatfish aquaculture market were selected to construct the causal loop diagram (CLD). Then the related stock/flow diagrams of the causal loop diagrams were constructed. This study had been forecasting a production price and supply, demand, and consumption volume for the flatfish market by a monthly basis, and then made some validation to the forecasting. Finally, four governmental policies such as import, storage, reduction of input, and demand control were tentatively evaluated by the created model. As a result, the facts that the demand control policy is most effective, and import and storage policies are moderately effective were found.

  • PDF

Forecasting Electric Power Demand Using Census Information and Electric Power Load (센서스 정보 및 전력 부하를 활용한 전력 수요 예측)

  • Lee, Heon Gyu;Shin, Yong Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.3
    • /
    • pp.35-46
    • /
    • 2013
  • In order to develop an accurate analytical model for domestic electricity demand forecasting, we propose a prediction method of the electric power demand pattern by combining SMO classification techniques and a dimension reduction conceptualized subspace clustering techniques suitable for high-dimensional data cluster analysis. In terms of electricity demand pattern prediction, hourly electricity load patterns and the demographic and geographic characteristics can be analyzed by integrating the wireless load monitoring data as well as sub-regional unit of census information. There are composed of a total of 18 characteristics clusters in the prediction result for the sub-regional demand pattern by using census information and power load of Seoul metropolitan area. The power demand pattern prediction accuracy was approximately 85%.

Constructing Demand and Supply Forecasting Model of Social Service using Time Series Analysis : Focusing on the Development Rehabilitation Service (시계열 모형을 활용한 사회서비스 수요·공급모형 구축 : 발달재활서비스를 중심으로)

  • Seo, Jeong-Min
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.6
    • /
    • pp.399-410
    • /
    • 2015
  • The primary goal of the study is to examine the possibility of applying the time series model to forecasting demand and supply of social services. In the study, we used survey data based on a nationally represented sample which is secondary processed data. We selected developmental rehabilitation service. The analysis, we made models of a demand and a supply using time series analysis. Utilizing the estimates, we identified each model's pattern. This study provides an empirical evidence to suggest benefits of using the time series model for forecasting the demand and the supply pattern of newly introduced social services. We also provide discussions on policy implications of utilizing demand and supply time series models in the process of developing new social services.

A New Algorithm for Recursive Short-term Load Forecasting (순환형식에 의한 기분거좌상측 알고리)

  • Young-Moon Park;Sung-Chul Oh
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.5
    • /
    • pp.183-188
    • /
    • 1983
  • This paper deals with short-term load forecasting. The load model is represented by the state variable form to exploit the Kalman filter technique. The load model is derived from Taylor series expansion and remainder term is considered as noise term. In order to solve recursive filter form, among various algorithm of solving Kalman filter, this paper uses exponential data weighting technique. This paper also deals with the asymptotic stability of filter. Case studies are carried out for the hourly power demand forecasting of the Korea electrical system.

  • PDF

Parameter estimation of the Diffusion Model for Demand Side Management Monitoring System (DSM Monitoring을 위한 확산 모델의 계수 추정)

  • Choi, Cheong-Hun;Jeong, Hyun-Su;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1073-1075
    • /
    • 1998
  • This paper presents the method of parameter estimation of diffusion model for monitoring Demand-Side Management Program. Bass diffusion model was applied in this paper, which has different values according to parameters ; coefficients of innovation, imitation and potential adopters. Though it is very important to estimate three parameter, there are no empirical results in practice. Thus, this paper presents the method of parameter estimation in case of few data with constraints to reduce the possibility of bad estimation. The constraints are empirical results or expert's decision. Case studies show the diffusion curves of high-efficient lighting and also forecasting of the peak value for power demand considering diffusion of high-efficient lighting, the feedback and least-square parameter estimation method used in this paper enable us to evaluate the status and forecasting of the effect of DSM program.

  • PDF

A Study on Forecasting Manpower Demand for Smart Shipping and Port Logistics (스마트 해운항만물류 인력 수요 예측에 관한 연구)

  • Sang-Hoon Shin;Yong-John Shin
    • Journal of Navigation and Port Research
    • /
    • v.47 no.3
    • /
    • pp.155-166
    • /
    • 2023
  • Trend analysis and time series analysis were conducted to predict the demand of manpower under the smartization of shipping and port logistics with transportation survey data of Statistic Korea during the period from 2000 to 2020 and Statistical Yearbook data of Korean Seafarers from 2004 to 2021. A linear regression model was adopted since the validity of the model was evaluated as the highest in forecasting manpower demand in the shipping and port logistics industry. As a result of forecasting the demand of manpower in autonomous ship, remote ship management, smart shipping business, smart port, smart warehouse, and port logistics service from 2021 to 2035, the demand for smart shipping and port logistics personnel was predicted to increase to 8,953 in 2023, 20,688 in 2030, and 26,557 in 2035. This study aimed to increase the predictability of manpower demand through objective estimation analysis, which has been rarely conducted in the smart shipping and port logistics industry. Finally, the result of this research may help establish future strategies for human resource development for professionals in smart shipping and port logistics by utilizing the demand forecasting model described in this paper.

A Study on Forecasting the Demand of WCDMA Mobile Phones (WCDMA 이동통신 단말기 수요예측에 관한 연구)

  • Lee, Sang-Hoon;Lee, Byoung-Chul;Kim, Yun-Bae;Kim, Jae-Bum
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.4
    • /
    • pp.153-160
    • /
    • 2006
  • The demand of domestic mobile service has been explosively increasing. The forthcoming WCDMA, which open in 2006, is also a key technology in the mobile service market. The WCDMA service needs HSPDA phones which will be evolved to HSDPA. In the aspect of drawing up management strategy, practical researches about forecasting the demands of new mobile phones are necessary. In this paper, we provide the modified the Lotka-volterra model as a forecasting model, which is concerned with effects of phone prices and performance.

  • PDF

Domestic Automotive Exterior Lamp-LEDs Demand and Forecasting using BASS Diffusion Model (BASS 확산 모형을 이용한 국내 자동차 외장 램프 LED 수요예측 분석)

  • Lee, Jae-Heun
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.3
    • /
    • pp.349-371
    • /
    • 2022
  • Purpose: Compared to the rapid growth rate of the domestic automotive LED industry so far, the predictive analysis method for demand forecasting or market outlook was insufficient. Accordingly, product characteristics are analyzed through the life trend of LEDs for automotive exterior lamps and the relative strengths of p and q using the Bass model. Also, future demands are predicted. Methods: We used sales data of a leading company in domestic market of automotive LEDs. Considering the autocorrelation error term of this data, parameters m, p, and q were estimated through the modified estimation method of OLS and the NLS(Nonlinear Least Squares) method, and the optimal method was selected by comparing prediction error performance such as RMSE. Future annual demands and cumulative demands were predicted through the growth curve obtained from Bass-NLS model. In addition, various nonlinear growth curve models were applied to the data to compare the Bass-NLS model with potential market demand, and an optimal model was derived. Results: From the analysis, the parameter estimation results by Bass-NLS obtained m=1338.13, p=0.0026, q=0.3003. If the current trend continues, domestic automotive LED market is predicted to reach its maximum peak in 2021 and the maximum demand is $102.23M. Potential market demand was $1338.13M. In the nonlinear growth curve model analysis, the Gompertz model was selected as the optimal model, and the potential market size was $2864.018M. Conclusion: It is expected that the Bass-NLS method will be applied to LED sales data for automotive to find out the characteristics of the relative strength of q/p of products and to be used to predict current demand and future cumulative demand.