• 제목/요약/키워드: Demagnetization of permanent magnet

검색결과 59건 처리시간 0.031초

회전자 위치정보 센서를 이용한 Switched Reluctance Motor (SRM)의 구동 및 제어 시스템 Modeling (Modeling of Switched Reluctance Motor (SRM) Drive and Control System using Rotor Position Information Sensor)

  • 정성인
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.137-142
    • /
    • 2021
  • 최근에는 회전자에 희토류 영구자석을 삽입하여 높은 효율과 출력밀도를 얻을 수 있는 매입형 영구자석 (IPM: Interior Permanent Magnet) 전동기 또는 표면부착형 영구자석 (SPM : Surface Permanent Magnet) 전동기처럼 영구자석이 사용된 전동기의 연구가 활발히 이루어지고 있다. 영구자석을 사용하기 때문에 릴럭턴스 전동기나 유도전동기와 비교해 효율이 높고 출력밀도가 높은 장점이 있으나 회전자에 영구자석을 삽입함으로써 고속운전 및 영구자석의 감자로 인한 신뢰성 감소, 희토류 금속의 원가 상승 등이 문제시되고 있다. 본 논문에서는 희토류 영구자석 전동기를 대체할 수 있는 미래기술 개발과, 희토류 저감형 전동기와 탈 희토류 전동기의 기술 선점을 요구하는 시대적 이슈(Issue)에 맞춰 영구자석이 필요 없는 스위치드 릴럭턴스 전동기 (Switched Reluvtance Motor, SRM)를 구동시키기 위한 구동 제어에 연구하고자 한다. PSIM 시뮬레이션 프로그램에서 제공하는 3상 SRM library를 이용하여 회전자 위치 정보 센서를 이용한 SRM의 구동 및 제어 시스템 모델링 (Modeling)을 연구하고자 한다.

Pulsed Actuator with Combined Plunger Made of Carbon Steel and Permanent Magnet

  • Dolezel, Ivo;Panek, David;Ulrych, Bohus
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권3호
    • /
    • pp.282-288
    • /
    • 2012
  • A special pulsed electromagnetic actuator is presented whose plunger consists of two parts made of carbon steel and permanent magnet, respectively. The actuator exhibits a high holding force and small consumption of energy. The movement of the plunger is controlled by short current pulses. The static characteristics and other operation properties of the device are modeled numerically.

매입형 영구자석 전동기의 열 등가 회로 해석 (Thermal Network Analysis of Interior Permanent Magnet Machine)

  • 임재원;서장호;이상엽;정현교
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.527-532
    • /
    • 2009
  • Recently, Interior Permanent Magnet Machine(IPM) is widely used for traction motor in the high speed train. Due to the high efficiency and high power density of the IPM, it has lots of heat sources such as iron loss and copper loss. These heat sources can cause the demagnetization of permanent magnet, losses in output power and even irreversible defect of the IPM. To prevent the power loss caused by heat sources, the accurate thermal analysis has to be carried out. For the thermal analysis of the IPM, the thermal network is designed for this traction motor. The thermal analysis has executed at rated speed operation. The result of thermal network analysis can be used for the IPM design process.

  • PDF

고속 전철용 매입형 영구자석 전동기의 풍량에 따른 열해석 (Thermal Analysis of Traction Motor in the High Speed Train with various Flow Rate)

  • 임재원;이경표;정현교
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.165-170
    • /
    • 2010
  • Recently, Interior Permanent Magnet Machine(IPM) is widely used for traction motor in the high speed train. Higher efficiency and power density are the superb performance of IPM. Due to the high power density, however, it has lots of heat source which are originated from copper losses and core losses. These heat source can cause the permanent demagnetization in magnet and the loss of torque and power. To prevent the undesirable loss in the traction motor, the accurate loss calculation and the thermal analysis should be preceded. Especially, the end-winding area and permanent magnet area should be examined correctly. In this paper, the electromagnetic fields were examined by finite element method to analyze the electromagnetic properties of IPM and thermal analysis are carried out with pre-calculated losses. To validate the analysis result, the experiment set with forced air cooling system is manufactured.

  • PDF

Research on the Influence of Inter-turn Short Circuit Fault on the Temperature Field of Permanent Magnet Synchronous Motor

  • Qiu, Hongbo;Yu, Wenfei;Tang, Bingxia;Yang, Cunxiang;Zhao, Haiyang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1566-1574
    • /
    • 2017
  • When the inter-turn short circuit (ITSC) fault occurs, the distortion of the magnetic field is serious. The motor loss variations of each part are obvious, and the motor temperature field is also affected. In order to obtain the influence of the ITSC fault on the motor temperature distribution, firstly, the normal and the fault finite element models of the permanent magnet synchronous motor (PMSM) were established. The magnetic density distribution and the eddy current density distribution were analyzed, and the mechanism of loss change was revealed. The effects of different forms and degrees of the fault on the loss were obtained. Based on the loss analysis, the motor temperature field calculation model was established, and the motor temperature change considering the loop current was analyzed. The influence of the fault on the motor temperature distribution was revealed. The sensitivity factors that limit the motor continuous operation were obtained. Finally, the correctness of the simulation was verified by experiments. The conclusions obtained are of great significance for the fault and high temperature demagnetization of the permanent magnet analysis.

IPMSM의 희토류 영구자석의 온도상승 억제를 위한 팬효과 (Fan Effect for Temperature Rising Suppression of the Rare Earth IPMSM)

  • 조을규;조광진;김규탁
    • 전기학회논문지
    • /
    • 제64권11호
    • /
    • pp.1558-1563
    • /
    • 2015
  • In this paper, temperature characteristic analysis was performed by using a thermal equivalent circuit. To suppress the temperature rising, the cooling fan was installed in rotor. The temperature of permanent magnet was reduced from 66[$^{\circ}C$] to 55[$^{\circ}C$] by installing the fan. The temperature of the permanent magnets is difficult to measure. Therefore the temperature of end winding was measured directly by the thermo couple. The validity of this study was demonstrated as compared the calculated results with experimental ones.

불가역 감자를 고려한 단상 LSPM의 영구자석 두께 산정 (Calculation of Permanent Magnet Thickness for Single Phase LSPM Considering the Irreversible Demagnetization of Permanent Magnet)

  • 이태훈;이정종;유세현;김영균;정인성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1007-1008
    • /
    • 2011
  • LSPM(Line Start Permanent Motor)은 기존의 가정용으로 널리 사용되고 있는 단상유도기에 영구 자석을 삽입함으로써 별도의 회로 없이 정상상태에서 동기기로 작용하는 고효율의 전동기이다. 하지만 기동시 높은 전류로 인한 전기자 반작용과 온도 상승으로 인하여 자석의 불가역 감자가 빈번하게 일어나는 문제점을 가지고 있다. 이에 본 논문은 모터 형상에 따른 영구자석의 퍼미언스 계산을 통해 동작점을 산정함으로서 불가역 감자가 발생하지 않는 영구자석의 최적의 사이즈를 선정하는데 목적을 두었다.

  • PDF

철도차량용 매입형 영구자석 동기전동기의 영구자석 와전류 손실 분석 연구 (Analysis of Eddy Current Loss on Permanent Magnets of Interior Permanent Magnet Synchronous Motor for Railway Transit)

  • 박찬배;이형우;이병송
    • 한국철도학회논문집
    • /
    • 제15권4호
    • /
    • pp.370-375
    • /
    • 2012
  • 본 연구에서는 철도차량용 추진시스템에 매입형 영구자석 동기전동기(IPMSM)를 적용하기 위하여 110kW급 고출력밀도 IPMSM을 집중권/분포권 모델로 각각 설계하였다. 집중권 모델은 6극 9슬롯 구조이고, 분포권 모델은 6극 36슬롯 구조이다. 일반적으로 IPMSM의 영구자석에서의 와전류 손실은 슬롯 고조파에 의해 발생된다. IPMSM의 고속 회전 시 와전류 손실에 의한 영구자석의 열적 감자현상은 특히 집중권 IPMSM에서 주요 문제가 된다. 영구자석에서의 와전류 손실을 줄이는 설계는 고속 운전을 필요로 하는 철도차량 추진시스템용 IPMSM 설계에 있어서 중요하다. 그러므로 본 논문에서는 영구자석에서의 와전류 손실을 줄이기 위하여 영구자석을 분할하는 방법을 제안한다. 저자는 영구자석의 분할 개수를 변화시면서 IPMSM 집중권 모델의 영구자석에서 발생되는 와전류 손실의 변화 특성을 분석한다.

Influence of Different Frequency Harmonic Generated by Rectifier on High-speed Permanent Magnet Generator

  • Qiu, Hongbo;Wei, Yanqi;Yang, Cunxiang;Fan, Xiaobin
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1956-1964
    • /
    • 2018
  • Since the stator winding of High-Speed Permanent Magnet Generator (HSPMG) has few winding turns and low inductance value, it is more prone to be influenced by harmonic current. Moreover, the operation efficiency and the torque stability of HSPMG will be greatly influenced by harmonic current. Taking a 117 kW, 60 000 rpm HSPMG as an example, in order to analyze the effects of harmonic current on HSPMG in this paper, the 2-D finite element electromagnetic field model of the generator was established and the correctness of the model was verified by testing the generator prototype. Based on the model, the losses and torque of the generator under different frequency harmonic current were studied. The change rules of the losses and torque were found out. Based on the analysis of the influence of the harmonic phase angle on torque ripple, it is found that the torque ripple could be weakened through changing the harmonic phase angle. Through the analysis of eddy current density in rotor, the change mechanism of the rotor eddy current loss was revealed. These conclusions can contribute to reduce harmonic loss, prevent demagnetization fault and optimize torque ripple of HSPMG used in distributed power supply system.

Low Cost Design Study of Brushless DC Motor for Electric Water Pump Application

  • Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.942-949
    • /
    • 2014
  • We studied about the rotor design change using a Ferrite ring magnet to reduce material cost in the condition of the same stator core design. However, this design direction has many weak points such as the decrease of BEMF, the low maximum output, the irreversible demagnetization characteristics of a permanent magnet and so on. In order to mitigate such disadvantages, an optimization design of the BLDC motor has been developed by changing each design parameter and by improving the electromagnetic structure. In the proposed water pump SPM BLDC motor using Ferrite magnet, the outer and inner diameter of stator is fixed to the value of the conventional IPM BLDC motor using Nd-Fe-B magnet. The design specification requirements should be satisfied with the same output power and efficiency characteristics in the same dimension. As a result of this study, the design comparison results considering driving performances and material cost are represented. Through the actual experiment with the prototype of the designed motor, the simulations results are verified.