• Title/Summary/Keyword: Delta variant

Search Result 27, Processing Time 0.028 seconds

Isolation and Characterization of Mouse Testis Specific Serine/Threonine Kinase 5 Possessing Four Alternatively Spliced Variants

  • Wei, Youheng;Fu, Guolong;Hu, Hairong;Lin, Gang;Yang, Jingchun;Guo, Jinhu;Zhu, Qiquan;Yu, Long
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.749-756
    • /
    • 2007
  • Phosphorylation on serine/threonine or tyrosine residues of target proteins is an essential and significant regulatory mechanism in signal transduction during many cellular and life processes, including spermatogenesis, oogenesis and fertilization. In the present work, we reported the isolation and characterization of mouse testis-specific serine/threonine kinase 5 (Tssk5), which contains four alternatively spliced variants including, Tssk5$\alpha$, Tssk5$\beta$, Tssk5$\gamma$ and Tssk5$\delta$. Moreover, the locus of Tssk5 is on chromosome 14qC3 and the four variants had a similar high expression in the testis and the heart; however, had a low expression in other tissues, except for Tssk5$\alpha$ which also had comparably high expression in the spleen. Each variant of Tssk5 expression began in the testis 16 days after birth. Aside from TSSK5$\alpha$, the other isoforms have an insertion of ten amino acid residues (RLTPSLSAAG) in region VIb (HRD domain) (His-Arg-Asp). Moreover, only TSSK5$\alpha$ exhibited kinase activity and consistently, a further Luciferase Reporter Assay demonstrated that TSSK5$\beta$, TSSK5$\gamma$ and TSSK5$\delta$ cannot be stimulated at the CREB/CRE responsive pathway in comparison to TSSK5$\alpha$. These findings suggest that TSSK5$\beta$, TSSK5$\gamma$, TSSK5$\delta$ may be pseudokinases due to the insertion, which may damage the structure responsible for active kinase activity. Pull-down assay experiments indicated that TSSK5$\beta$, TSSK5 $\gamma$ and TSSK5$\delta$ can directly interact with TSSK5$\alpha$. In summary, these four isoforms with similar expression patterns may be involved in spermatogenesis through a coordinative way in testis.

Characterization of a PyrR-deficient Mutant of Bacillus subtilis by a Proteomic Approach (프로테옴 분석에 의한 Bacillus subtilis PyrR 돌연변이체의 특성)

  • Seul, Keyung-Jo;Cho, Hyun-Soo;Ghim, Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.1
    • /
    • pp.9-19
    • /
    • 2011
  • The Bacillus subtilis pyrimidine biosynthetic (pyr) operon encodes all of the enzymes for the de novo biosynthesis of Uridine monophosphate (UMP) and additional cistrones encoding a uracil permease and the regulatory protein PyrR. The PyrR is a bifunctional protein with pyr mRNA-binding regulatory funtion and uracil phosphoribosyltransferase activity. To study the global regulation by the pyrR deletion, the proteome comparison between Bacillus subtilis DB104 and Bacillus subtilis DB104 ${\Delta}$pyrR in the minimal medium without pyrimidines was employed. Proteome analysis of the cytosolic proteins from both strains by 2D-gel electrophoresis showed the variations in levels of protein expression. On the silver stained 2D-gel with an isoelectric point (pI) between 4 and 10, about 1,300 spots were detected and 172 spots showed quantitative variations in which 42 high quantitatively variant proteins were identified. The results showed that production of the pyrimidine biosynthetic enzymes (PyrAA, PyrAB, PyrB, PyrC, PyrD, and PyrF) were significantly increased in B. subtilis DB104 ${\Delta}$pyrR. Besides, proteins associated carbohydrate metabolism, elongation protein synthesis, metabolism of cofactors and vitamins, motility, tRNA synthetase, catalase, ATP-binding protein, and cell division protein FtsZ were overproduced in the PyrR-deficient mutant. Based on analytic results, the PyrR might be involved a number of other metabolisms or various phenomena in the bacterial cell besides the pyrimidine biosynthesis.

Gene Expression Patterns of Spleen, Lung and Brain with Different Radiosensitivity in C57BL6 Mice

  • Majumder Md. Zahidur Rahman;Lee, Woo-Jung;Lee, Su-Jae;Bae, Sang-Woo;Lee, Yun-Sil
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.4
    • /
    • pp.197-208
    • /
    • 2005
  • Although little information is available on the underlying mechanisms, various genetic factors have been associated with tissue-specific responses to radiation. In the present study, we explored the possibility whether organ specific gene expression is associated with radiosensitivity using samples from brain, lung and spleen. We examined intrinsic expression pattern of 23 genes in the organs by semi-quantitative RT-PCR method using both male and female C57BL/6 mice. Expression of p53 and p21, well known factors for governing sensitivity to radiation or chemotherapeutic agents, was not different among the organ types. Both higher expression of sialyltransferase, delta7-sterol reductase, leptin receptor splice variant form 12.1, and Cu/Zn superoxide dismutase (SOD) and lower expression of alphaB crystalline were specific for spleen tissue. Expression level of glutathione peroxidase and APO-1 cell surface antigen gene in lung tissue was high, while that of Na, K-ATPase alpha-subunit, Cu/ZnSOD, and cyclin G was low. Brain, radioresistant organ, showed higher expressions of Na, K-ATPase-subunit, cyclin G, and nucleolar protein hNop56 and lower expression of delta7-sterol reductase. The result revealed a potential correlation between gene expression patterns and organ sensitivity, and Identified genes which might be responsible for organ sensitivity.

Glycogen Synthase Kinase-3 Interaction Domain Enhances Phosphorylation of SARS-CoV-2 Nucleocapsid Protein

  • Jun Seop, Yun;Hyeeun, Song;Nam Hee, Kim;So Young, Cha;Kyu Ho, Hwang;Jae Eun, Lee;Cheol-Hee, Jeong;Sang Hyun, Song;Seonghun, Kim;Eunae Sandra, Cho;Hyun Sil, Kim;Jong In, Yook
    • Molecules and Cells
    • /
    • v.45 no.12
    • /
    • pp.911-922
    • /
    • 2022
  • A structural protein of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), nucleocapsid (N) protein is phosphorylated by glycogen synthase kinase (GSK)-3 on the serine/arginine (SR) rich motif located in disordered regions. Although phosphorylation by GSK-3β constitutes a critical event for viral replication, the molecular mechanism underlying N phosphorylation is not well understood. In this study, we found the putative alpha-helix L/FxxxL/AxxRL motif known as the GSK-3 interacting domain (GID), found in many endogenous GSK-3β binding proteins, such as Axins, FRATs, WWOX, and GSKIP. Indeed, N interacts with GSK-3β similarly to Axin, and Leu to Glu substitution of the GID abolished the interaction, with loss of N phosphorylation. The N phosphorylation is also required for its structural loading in a virus-like particle (VLP). Compared to other coronaviruses, N of Sarbecovirus lineage including bat RaTG13 harbors a CDK1-primed phosphorylation site and Gly-rich linker for enhanced phosphorylation by GSK-3β. Furthermore, we found that the S202R mutant found in Delta and R203K/G204R mutant found in the Omicron variant allow increased abundance and hyper-phosphorylation of N. Our observations suggest that GID and mutations for increased phosphorylation in N may have contributed to the evolution of variants.

Identification of a Potential Gene for Elevation ω-3 Concentration and its Efficiency for Improving ω-6/ω-3 Ratio in Soybean

  • Hyun Jo;Jeong-Dong Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.24-24
    • /
    • 2022
  • This present study was to identify a novel candidate gene that contribute to the elevated α-linolenic acid (ALA, ω-3) concentration in PE2166 from mutagenesis of Pungsannamul. Major loci qALA5_1 and qALA5_2 were detected on chromosome 5 of soybean through quantitative trait loci mapping analyses of recombinant inbred lines. With next generation sequencing of parental lines and Pungsannamul, and recombinant analyses, a potential gene, Glyma. 05g221500 (HD) controlling elevated ALA concentration was identified. HD is a homeodomain-like transcriptional regulator that may regulate the expression level of microsomal ω-3 fatty acid desaturase (FAD3) genes responsible for the conversion of linoleic acid into ALA in the fatty acid biosynthetic pathway. In addition, we hypothesized that combination of mutant alleles, HD and either of microsomal delta-12 fatty acid desaturase 2-1 (FAD2-1\ could reduce the ω-6/ω-3 ratio. In populations where HD, and FAD2-1A and FAD2-1B genes were segregated, combination of a hd allele from PE2166 and either of the variant FAD2-1 alleles were sufficient to reduce the ω-6/ω-3 ratio in seeds.

  • PDF

Proteomic Profiles of Mouse Neuro N2a Cells Infected with Variant Virulence f Rabies Viruses

  • Wang, Xiaohu;Zhang, Shoufeng;Sun, Chenglong;Yuan, Zi-Guo;Wu, Xianfu;Wang, Dongxia;Ding, Zhuang;Hu, Rongliang
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.366-373
    • /
    • 2011
  • We characterized the proteomes of murine N2a cells following infection with three rabies virus (RV) strains, characterized by distinct virulence phenotypes (i.e., virulent BD06, fixed CVS-11, and attenuated SRV9 strains), and identified 35 changes to protein expression using two-dimensional gel electrophoresis in whole-cell lysates. The annotated functions of these proteins are involved in various cytoskeletal, signal transduction, stress response, and metabolic processes. Specifically, a-enolase, prx-4, vimentin, cytokine-induced apoptosis inhibitor 1 (CIAPIN1) and prx-6 were significantly up-regulated, whereas Trx like-1 and galectin-1 were down-regulated following infection of N2a cells with all three rabies virus strains. However, comparing expressions of all 35 proteins affected between BD06-, CVS-11-, and SRV9-infected cells, specific changes in expression were also observed. The up-regulation of vimentin, CIAPIN1, prx-4, and 14-3-3 ${\theta}/{\delta}$, and down-regulation of NDPK-B and HSP-1 with CVS and SRV9 infection were ${\geq}2$ times greater than with BD06. Meanwhile, Zfp12 protein, splicing factor, and arginine/serine-rich 1 were unaltered in the cells infected with BD06 and CVS-11, but were up-regulated in the group infected with SRV9. The proteomic alterations described here may suggest that these changes to protein expression correlate with the rabies virus' adaptability and virulence in N2a cells, and hence provides new clues as to the response of N2a host cells to rabies virus infections, and may also aid in uncovering new pathways in these cells that are involved in rabies infections. Further characterization of the functions of the affected proteins may contribute to our understanding of the mechanisms of RV infection and pathogenesis.

Association between Genetic Polymorphism of Peroxisome Proliferator-Activated Receptor Alpha Leu162Val and Metabolioc Syndrome in Korean (한국인에서 peroxisome proliferator-activated receptor alpha Leu162Val 유전자 다형성과 대사증후군간의 관련성)

  • Shin Soung-Cheal;Song Hye-Soon;Hong Young-Seoub;Kwak Jong-Young;Yoo Byung-Chul;Lee Yong-Hwan
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.199-205
    • /
    • 2006
  • Peroxisome proliferator activated receptor (PPAR)-$\alpha$ of three PPAR subtypes ($-\alpha,\;-\beta/-\gamma,\;-\delta$), which are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors, plays a key role in lipoprotein and glucose homeostasis. A variation in the PPAR-a gene expression has been suggested to influence the development of metabolic syndrome through alterations in lipid concentrations. The aim of our study was to investigate the association between the PPAR-a and metabolic syndrome among South Korean. A total of 542 health screen examinees were enrolled in this study who were examined in Kosin University Gospel Hospital from December, 2004 to July, 2005. The height, weight, waist circumference, and systolic and diastolic blood pressure of the subjects were examined and fasting blood glucose, total cholesterol, HDL cholesterol, LDL cholesterol, triglyceride were measured by-sampling in venous blood. The metabolic syndrome was defined as the presence of three or more of the following : waist circumference men ${\geq}90cm$, women ${\geq}80cm$, blood pressure ${\geq}130/85mmHg$, fasting glucose ${\geq}110mg/dL$, HDL cholesterol men <40 mg/dL, women <50 mg/dL, triglyceride ${\geq}150mg/dL$. The blood pressure, fasting glucose, HDL cholesterol, triglyceride were evaluated by using the criteria of NECP ATP III and waist circumference was assessed by using the criteria of WHO Asia-Western Pacific. And the author compared the frequency of the PPAR-$\alpha$ mutation of L162V ($C{\rightarrow}G$ variant in exon 5) in a sample of 542 subjects with and without the metabolic syndrome by polymerase chain reaction allele-specific oligonucleotide (PCR-ASO) method. One (0.2%) hetero-isotype among high risk of metabolic syndrome was identified. The values of waist circumference, body mass index and low density lipoprotein cholesterol of the mutant were 100 cm, 28.6 $kg/m^2$ and 120 mg/dL, respectively. Although the author failed to see significant association between the presence of the PPAR-$\alpha$ L162V polymorphism and metabolic syndrome, one PPAR-$\alpha$ L162V polymorphism in metabolic syndrome patients was found.