• 제목/요약/키워드: Delphinidin

검색결과 61건 처리시간 0.029초

Delphinidin이 인체 유방암세포 MDA-MB-231의세포증식 억제와 세포사멸 유도에 미치는 영향 (Delphinidin inhibits cell proliferation and induces apoptosis in MDA-MB-231 human breast cancer cell lines)

  • 서은영
    • Journal of Nutrition and Health
    • /
    • 제46권6호
    • /
    • pp.503-510
    • /
    • 2013
  • Breast cancer is the most common malignancy in women, both in the developed and developing countries. Anthocyanins are natural coloring of a multitude of foods, such as berries, grapes or cherries. Glycosides of the aglycons delphinidin represent the most abundant anthocyanins in fruits. Delphinidin has recently been reported to inhibit the growth of human tumor cell line. Also, delphinidin is a powerful antioxidant that reportedly exerts beneficial effects in patients with advanced cancer by reducing the level of reactive oxygen species and increasing glutathion peroxidase activity. This study investigates the effects of delphinidin on protein ErbB2, ErbB3 and Akt expressions associated with cell proliferation and Bcl-2, Bax protein associated with cell apoptosis in MDA-MB-231 human breast cancer cell line. MDA-MB-231 cells were cultured with various concentrations (0, 5, 10, and $20{\mu}mol/L$) of delphinidin. Delphinidin inhibited breast cancer cell growth in a dose dependent manner (p < 0.05). ErbB2 and ErbB3 expressions were markdly lower $5{\mu}mol/L$ delphinidin (p < 0.05). In addition, total Akt and phosphorylated Akt levels were decreased dose-dependently in cells treated with delphinidin (p < 0.05). Futher, Bcl-2 levels were dose-dependently decreased and Bax expression was significantly increased in cells treated with delphinidin (p < 0.05). In conclusion, I have shown that delphinidin inhibits cell growth, proliferation and induces apoptosis in MDA-MB-231 human breast cancer cell lines.

Antioxidative Effects of Delphinidin under in vitro and Cellular System

  • Noh, Jeong-Sook;Cho, Yun-Ju;Kim, Boh-Kyung;Park, Kun-Young;Cho, Eun-Ju
    • Food Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.167-171
    • /
    • 2009
  • This study examined the antioxidative activity of delphinidin, a kind of anthocyanidin from eggplant. Cellular protective potential from oxidative damage by nitric oxide (NO), superoxide anion ($O_2^-$), and peroxynitrite ($ONOO^-$) using epithelial cell line LLC-PK1 cell as well as in vitro radical scavenging effects were investigated. Delphinidin showed strong in vitro radical scavenging effects against NO, $O_2^-$, and hydroxyl radical (${\cdot}OH$) in dose-dependent manners. In addition, delphinidin increased cell viability in LLC-PK1 cells in a concentration-dependent manner when viability was reduced by $ONOO^-$-induced oxidative damage. To elucidate the protective mechanisms of delphinidin from $ONOO^-$, sodium nitroprusside (SNP), and pyrogallol were also employed to generate NO and $O_2^-$, respectively. The treatment of delphinidin recovered reductions in cell viability caused by SNP and pyrogallol, indicating that delphinidin can attenuate oxidative stress induced by NO and $O_2^-$. The present study suggests that delphinidin is a promising anti oxidative agent.

Delphinidin enhances radio-therapeutic effects via autophagy induction and JNK/MAPK pathway activation in non-small cell lung cancer

  • Kang, Seong Hee;Bak, Dong-Ho;Chung, Byung Yeoup;Bai, Hyoung-Woo;Kang, Bo Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권5호
    • /
    • pp.413-422
    • /
    • 2020
  • Delphinidin is a major anthocyanidin compound found in various vegetables and fruits. It has anti-oxidant, anti-inflammatory, and various other biological activities. In this study we demonstrated the anti-cancer activity of delphinidin, which was related to autophagy, in radiation-exposed non-small cell lung cancer (NSCLC). Radiosensitising effects were assessed in vitro by treating cells with a subcytotoxic dose of delphinidin (5 μM) before exposure to γ-ionising radiation (IR). We found that treatment with delphinidin or IR induced NSCLC cell death in vitro; however the combination of delphinidin pre-treatment and IR was more effective than either agent alone, yielding a radiation enhancement ratio of 1.54 at the 50% lethal dose. Moreover, combined treatment with delphinidin and IR, enhanced apoptotic cell death, suppressed the mTOR pathway, and activated the JNK/MAPK pathway. Delphinidin inhibited the phosphorylation of PI3K, AKT, and mTOR, and increased the expression of autophagy-induced cell death associated-protein in radiation-exposed NSCLC cells. In addition, JNK phosphorylation was upregulated by delphinidin pre-treatment in radiation-exposed NSCLC cells. Collectively, these results show that delphinidin acts as a radiation-sensitizing agent through autophagy induction and JNK/MAPK pathway activation, thus enhancing apoptotic cell death in NSCLC cells.

Cytoprotective Mechanism of Cyanidin and Delphinidin against Oxidative Stress-Induced Tenofibroblast Death

  • Nam, Dae Cheol;Hah, Young Sool;Nam, Jung Been;Kim, Ra Jeong;Park, Hyung Bin
    • Biomolecules & Therapeutics
    • /
    • 제24권4호
    • /
    • pp.426-432
    • /
    • 2016
  • Age-related rotator cuff tendon degeneration is related to tenofibroblast apoptosis. Anthocyanins reduce oxidative stress-induced apoptotic cell death in tenofibroblasts. The current study investigated the presence of cell protective effects in cyanidin and delphinidin, the most common aglycon forms of anthocyanins. We determined whether these anthocyanidins have antiapoptotic and antinecrotic effects in tenofibroblasts exposed to $H_2O_2$, and evaluated their biomolecular mechanisms. Both cyanidin and delphinidin inhibited $H_2O_2$-induced apoptosis in a dose-dependent manner. However, at concentrations of $100{\mu}g/ml$ or greater, delphinidin showed cytotoxicity against tenofibroblasts and a decreased antinecrotic effect. Cyanidin and delphinidin both showed inhibitory effects on the $H_2O_2$-induced increase in intracellular ROS formation and the activation of ERK1/2 and JNK. In conclusion, both cyanidin and delphinidin have cytoprotective effects on cultured tenofibroblasts exposed to $H_2O_2$. These results suggest that cyanidin and delphinidin are both beneficial for the treatment of oxidative stress-mediated tenofibroblast cell death, but their working concentrations are different.

Radioprotective effects of delphinidin on normal human lung cells against proton beam exposure

  • Kim, Hyun Mi;Kim, Suk Hee;Kang, Bo Sun
    • Nutrition Research and Practice
    • /
    • 제12권1호
    • /
    • pp.41-46
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Exposure of the normal lung tissue around the cancerous tumor during radiotherapy causes serious side effects such as pneumonitis and pulmonary fibrosis. Radioprotectors used during cancer radiotherapy could protect the patient from side effects induced by radiation injury of the normal tissue. Delphinidin has strong antioxidant properties, and it works as the driving force of a radioprotective effect by scavenging radiation-induced reactive oxygen species (ROS). However, no studies have been conducted on the radioprotective effect of delphinidin against high linear energy transfer radiation. Therefore, this study was undertaken to evaluate the radioprotective effects of delphinidin on human lung cells against a proton beam. MATERIALS/METHODS: Normal human lung cells (HEL 299 cells) were used for in vitro experiments. The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay assessed the cytotoxicity of delphinidin and cell viability. The expression of radiation induced cellular ROS was measured by the 2'-7'-dicholordihydrofluorescein diacetate assay. Superoxide dismutase activity assay and catalase activity assay were used for evaluating the activity of corresponding enzymes. In addition, radioprotective effects on DNA damage-induced cellular apoptosis were evaluated by Western blot assay. RESULTS: Experimental analysis, including cell survival assay, MTT assay, and Western blot assay, revealed the radioprotective effects of delphinidin. These include restoring the activities of antioxidant enzymes of damaged cells, increase in the levels of pro-survival protein, and decrease of pro-apoptosis proteins. The results from different experiments were compatible with each to provide a substantial conclusion. CONCLUSION: Low concentration ($2.5{\mu}M/mL$) of delphinidin administration prior to radiation exposure was radioprotective against a low dose of proton beam exposure. Hence, delphinidin is a promising shielding agent against radiation, protecting the normal tissues around a cancerous tumor, which are unintentionally exposed to low doses of radiation during proton therapy.

전립선 암세포에서 delphinidin에 의한 HIF-1α와 STAT3 억제를 통한 혈관내피 성장 인자 발현 저해 효과 (Delphinidin Suppresses Angiogenesis via the Inhibition of HIF-1α and STAT3 Expressions in PC3M Cells)

  • 김문현;김미현;박영자;장영채;박윤엽;송현욱
    • 한국식품과학회지
    • /
    • 제48권1호
    • /
    • pp.66-71
    • /
    • 2016
  • 델피니딘은 양전하를 뛰는 diphenylpropane의 polyphenolic ring 구조를 가진 주요한 안토시아닌 색소 중에 하나이다. 최근 연구에서 델피니딘은 항산화, 항염증 뿐만 아니라 항암 효능을 가진다고 보고되었다. 본 연구에서는 전립샘 암에서 종양의 성장과 신생혈관생성에 관련된 중요한 인자인 VEGF 발현에 대한 델피니딘의 억제 효과를 조사하였다. RT-PCR을 통해 델피니딘을 처리한 PC3M 전립샘 암세포 세포에서 EGF로 유도한 VEGF mRNA 발현 수준이 감소됨을 확인하였다. 또한 델피니딘은 VEGF의 전사인자인 HIF-$1{\alpha}$와 STAT3가 세포 핵으로 전위되는 것을 효과적으로 억제하였다. 한편 luciferase assay을 통해 HRE-promoter 활성을 확인해 본 결과, 델피니딘이 HIF-$1{\alpha}$의 전사 활성을 억제시켜 VEGF 발현을 감소시키는 것을 알 수 있었다. 그리고 델피니딘은 EGFR의 발현에는 영향을 미치지 않고, Akt, p70S6K, 4EBP1의 인산화를 특이적으로 억제하는 것으로 나타났다. 결론적으로 델피니딘이 HIF-$1{\alpha}$와 STAT3, VEGF 발현을 억제를 통하여 암세포 증식억제와 신생혈관형성을 억제하는 역할을 새롭게 확인하였다.

Virtual Screening Approaches in Identification of Bioactive Compounds Akin to Delphinidin as Potential HER2 Inhibitors for the Treatment of Breast Cancer

  • Patidar, Kavisha;Deshmukh, Aruna;Bandaru, Srinivas;Lakkaraju, Chandana;Girdhar, Amandeep;Gutlapalli, VR;Banerjee, Tushar;Nayarisseri, Anuraj;Singh, Sanjeev Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.2291-2295
    • /
    • 2016
  • Small molecule tyrosine kinase inhibitors targeting HER 2 receptors have emerged as an important therapeutic approach in inhibition of downstream proliferation and survival signals for the treatment of breast cancers. Recent drug discovery efforts have demonstrated that naturally occurring polyphenolic compounds like delphinidin have potential to inhibit proliferation and promote apoptosis of breast cancer cells by targeting HER2 receptors. While delphinidin may thus reduce tumour size, it is associated with serious side effects like dysphonia. Owing to the narrow therapeutic window of delphinidin, the present study aimed to identify high affinity compounds targeting HER2 with safer pharmacological profiles than delphinidin through virtual screening approaches. Delphinidin served as the query parent for identification of structurally similar compounds by Tanimoto-based similarity searching with a threshold of 95% against the PubChem database. The compounds retrieved were further subjected to Lipinski and Verber's filters to obtain drug like agents, then further filtered by diversity based screens with a cut off of 0.6. The compound with Pubchem ID: 91596862 was identified to have higher affinity than its parent. In addition it also proved to be non-toxic with a better ADMET profile and higher kinase activity. The compound identified in the study can be put to further in vitro drug testing to complement the present study.

Anthocyanin의 Delphinidin이 MDA-MB-231 유방암세포에 미치는 영향 (Effects of Delphinidin in Anthocyanin on MDA-MB-231 Breast Cancer Cells)

  • 장혜연;이송희;안인정;이해님;김혜리;박영석;박병권;김병수;김상기;조성대;남정석;최창순;정지윤
    • 한국식품영양과학회지
    • /
    • 제43권2호
    • /
    • pp.231-237
    • /
    • 2014
  • 본 연구에서는 블루베리에 포함된 anthocyanin 중 delphinidin이 인간 유래의 MDA-MB-231 유방암세포의 성장을 억제시키고 apoptosis를 유발하는지 살펴보고 in vivo 실험에서도 항암효과가 나타나는지 확인하였다. 그 결과 cell viability를 보기 위한 MTT assay에서는 농도 의존적으로 암세포의 성장을 억제시켰으며, apoptosis의 확인을 위한 DAPI stain에서 농도 의존적으로 chromatin condensation이 유의적으로 증가하는 것을 확인하였다. 또한 western blot에서 암 억제 유전자인 p53 단백질이 증가하였고, anti-apoptotic 분자인 Bcl-2 단백질과 p-$GSK3{\beta}$ 단백질은 감소하였다. In vivo 실험에서는 대조군과 비교해 10 mg/kg delphinidin을 투여한 군에서 종양의 크기가 감소하였으며, TUNEL assay를 통해 apoptosis 세포 또한 통계학적으로 유의적인 증가가 관찰되어 종양 억제 효과를 확인하였다. 이상의 결과들로 볼 때, MDA-MB-231 유방암세포에서 delphinidin은 암세포의 증식을 억제시키고, apoptosis를 유발시키는 효과를 보이므로 암 예방제나 치료제로 개발될 수 있을 것으로 사료된다.

Anti-Proliferative and Anti-Carcinogenic Enzyme-inducing Activities of Delphinidin in Hepatoma Cells

  • Jang, Chan-Ho;Lee, In-Ae;Lim, Hyun-Ae;Kim, Ju-Ryoung;Ha, Young-Ran;Yu, Hoon;Sung, Mi-Kyung;Kim, Jong-Sang
    • Food Science and Biotechnology
    • /
    • 제16권4호
    • /
    • pp.641-645
    • /
    • 2007
  • Delphinidin, an aglycone form of anthocyanins, was demonstrated to have anti-carcinogenic potential. The compound at $50\;{\mu}g/mL$ caused a significant increase of quinone reductase activity, an anti-carcinogenic marker enzyme, in mouse hepatoma cell lines (Hepa1c1c7 and BPRc1). Delphinidin enhanced the expression of other detoxifying or antioxidant enzymes including glutathione s-transferase, gamma-glutamylcysteine synthetase, heme oxygenase 1, and glutathione reductase. It suppressed the proliferation of murine hepatoma cells in a dose-dependent manner, with approximately $IC_{50}$ of $70\;{\mu}g/mL$. These results suggest that delphinidin might be useful for cancer prevention.

가지(Solanum melongena L.) 활성물질의 라디칼 소거능과 산화적 스트레스에 대한 세포 보호 효과 (Free radical scavenging activity and protective effect from cellular oxidative stress of active compound from eggplant (Solanum melongena L.))

  • 김현영;조윤주;;조은주
    • 농업과학연구
    • /
    • 제38권4호
    • /
    • pp.625-629
    • /
    • 2011
  • To investigate the protective effect of eggplant (Solanum melongena L.) and its active compound, delphinidin, we used in vitro and cellular system. The active fraction from eggplant, BuOH fraction, showed protective effect from hydrogen peroxide-induced oxidative stress in WI-38 fibroblast cells. It suggests that eggplant would have the protective activity from radical-induced oxidative damage and its BuOH fraction would play the crucial role with antioxidative activity. In addition, delphinidin, the active compound from eggplant, exerted the strong 1,1-diphenyl-2-picrylhydrazyl scavenging effect with $IC_{50}$ value of 6.59 ${\mu}g/mL$. Furthermore, the cellular oxidative stress was induced by 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) in LLC-$PK_1$ cells, while treatment of delphinidin atteunated AAPH-induced oxidative stress as dose-dependent manner. The present study suggests the antioxidative activity of eggplant and delphinidin against free radical-induced oxidative stress.