• Title/Summary/Keyword: Delivery Volume

Search Result 294, Processing Time 0.027 seconds

Comparison of the Dose Distributions with Beam Arrangements in the Stereotactic Body Radiotherapy (SBRT) for Primary Lung Cancer (원발성 폐암에서 정위적 체부 방사선치료의 빔 배열에 따른 선량분포의 비교)

  • Yea, Ji Woon
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.110-115
    • /
    • 2014
  • To compare 2 beam arrangements, circumferential equally angles (EA) beams or partially angles (PA) beams for stereotactic body radiation therapy (SBRT) of primary lung cancer for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) delivery techniques with respect to target, ipsilateral lung, contralateral lung, and organs-at-risk (OAR) dose-volume metrics, as well as treatment delivery efficiency. Data from 12 patients, four treatment plans were generated per data sets ($IMRT_{EA}$, $IMRT_{PA}$, $VMAT_{EA}$, $VMAT_{PA}$). The prescribed dose (PD) was 60 Gy in 4 fractions to 95% of the planning target volume (PTV) for a 6-MV photon beam. When compared with the IMRT and VMAT treatment plan for 2 beams, conformity index, homogeneity index, high dose spillage, D2 cm (Dmax at a distance ${\geq}2cm$ beyond the PTV), R50 (ratio of volume circumscribed by the 50% isodose line and the PTV), resulted in similar. But Dmax of the Organ at risk (OAR), spinal cord, trachea, resulted in differ between four treatment plans. Especially $HDS_{location}$ showed big difference in 21.63% vs. 26.46%.

Volumetric modulated arc therapy for carotid sparing in the management of early glottic cancer

  • Kim, Young Suk;Lee, Jaegi;Park, Jong In;Sung, Wonmo;Lee, Sol Min;Kim, Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.34 no.1
    • /
    • pp.18-25
    • /
    • 2016
  • Purpose: Radiotherapy of the neck is known to cause carotid artery stenosis. We compared the carotid artery dose received between volumetric modulated arc therapy (VMAT) and conventional fixed-field intensity-modulated radiotherapy (IMRT) plans in patients with early glottic cancer. Materials and Methods: Twenty-one early glottic cancer patients who previously underwent definitive radiotherapy were selected for this study. For each patient, double arc VMAT, 8-field IMRT, 3-dimensional conformal radiotherapy (3DCRT), and lateral parallel-opposed photon field radiotherapy (LPRT) plans were created. The 3DCRT plan was generated using lateral parallel-opposed photon fields plus an anterior photon field. VMAT and IMRT treatment plan optimization was performed under standardized conditions to obtain adequate target volume coverage and spare the carotid artery. Dose-volume specifications for the VMAT, IMRT, 3DCRT, and LPRT plans were calculated with radiotherapy planning system. Monitor units (MUs) and delivery time were measured to evaluate treatment efficiency. Results: Target volume coverage and homogeneity results were comparable between VMAT and IMRT; however, VMAT was superior to IMRT for carotid artery dose sparing. The mean dose to the carotid arteries in double arc VMAT was reduced by 6.8% compared to fixed-field IMRT (p < 0.001). The MUs for VMAT and IMRT were not significantly different (p = 0.089). VMAT allowed an approximately two-fold reduction in treatment delivery time in comparison to IMRT (3 to 5 minutes vs. 5 to 10 minutes). Conclusion: VMAT resulted in a lower carotid artery dose compared to conventional fixed-field IMRT, and maintained good target coverage in patients with early glottic cancer.

Development of a Thermoplastic Oral Compensator for Improving Dose Uniformity in Radiation Therapy for Head and Neck Cancer (두경부암 방사선치료 시 선량 균일도 향상을 위한 Thermoplastic 구강 보상체의 개발)

  • Choi, Joon-Yong;Won, Young-Jin;Park, Ji-Yeon;Kim, Jong-Won;Moon, Bong-Ki;Yoon, Hyong-Geun;Moon, Soo-Ho;Jeon, Jong-Byeong;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.269-278
    • /
    • 2012
  • Aquaplast Thermoplastic (AT) is a tissue-equivalent oral compensator that has been developed to improve dose uniformity at the common boundary and around the treated area during radiotherapy in patients with head and neck cancer. In order to assess the usefulness of AT, the degree of improvement in dose distribution and physical properties were compared to those of oral compensators made using paraffin, alginate, and putty, which are materials conventionally used in dental imprinting. To assess the physical properties, strength evaluations (compression and drop evaluations) and natural deformation evaluations (volume change over time) were performed; a Gafchromic EBT2 film and a glass dosimeter inserted into a developed phantom for dose verification were used to measure the common boundary dose and the beam profile to assess the dose delivery. When the natural deformation of the oral compensators was assessed over a two-month period, alginate exhibited a maximum of 80% change in volume from moisture evaporation, while the remaining tissue-equivalent properties, including those of AT, showed a change in volume that was less than 3%. In a free-fall test at a height of 1.5 m (repeated 5 times as a strength evaluation), paraffin was easily damaged by the impact, but AT exhibited no damage from the fall. In compressive strength testing, AT was not destroyed even at 8 times the force needed for paraffin. In dose verification using a glass dosimeter, the results showed that in a single test, the tissue-equivalent (about 80 Hounsfield Units [HU]) AT delivered about 4.9% lower surface dose in terms of delivery of an output coefficient (monitor unit), which was 4% lower than putty and exhibited a value of about 1,000 HU or higher during a dose delivery of the same formulation. In addition, when the incident direction of the beam was used as a reference, the uniformity of the dose, as assessed from the beam profile at the boundary after passing through the oral compensators, was 11.41, 3.98, and 4.30 for air, AT, and putty, respectively. The AT oral compensator had a higher strength and lower probability of material transformation than the oral compensators conventionally used as a tissue-equivalent material, and a uniform dose distribution was successfully formed at the boundary and surrounding area including the mouth. It was also possible to deliver a uniformly formulated dose and reduce the skin dose delivery.

MICRO INJECTOR BASED ON DIGITAL DRIVE AND CONTROL FOR BIOMEDICAL ENGINEERING

  • Hou, Liya;Zhang, Weiyi;Mu, Lili;Zhu, Li
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2349-2351
    • /
    • 2003
  • This paper reports a novel microfluidic system, by which microfluidic delivery, transport and control can be digitally realized in femtoliter scale. Microelectronic grade $N_2$ from a pressurized canister was passed through HPLC tubing into a micro injector. The micro injector was driven and controlled digitally by the control system that can apply various control parameters such as pulse frequencies. A front-end of micro nozzle was inserted the dyed oil to collect droplets injected. The diameter of a droplet was measured by a microscope and a CCD camera, and then its volume can be calculated on the assumption that the droplet is spherical. The micro nozzles were simply pulled in glass capillary tubes by the micro puller self-made, and the geometry parameters of the micro nozzles can be adjusted easily. Experiments have successfully been carried out, and the results demonstrated that the proposed digital micro injector possesses three significant advantages : precise ultra-small liquid volume in femtoliter scale, digital microfluidic control and micro devices fabricated by simple glass process, not based on IC process.

  • PDF

Laser Microfabrication for Silicon Restrictor

  • Kim, Kwang-Ryul;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.15 no.1
    • /
    • pp.46-52
    • /
    • 2008
  • The restrictor, which is a fluid channel from a reservoir to a chamber inside a thermal micro actuator, has been fabricated using ArF and KrF excimer lasers, Diode-Pumped Solid State Lasers (DPSSL) and femtosecond lasers for a feasibility study. A numerical model of fluid dynamics for the actuator chamber and restrictor is presented. The model includes bubble formation and growth, droplet ejection through nozzle, and dynamics of fluid refill through the restrictor from a reservoir. Since an optimized and well-fabricated restrictor is important for a high frequency actuator, some special beam delivery setups and post processing techniques have been researched and developed. The effects of variations of the restrictor length, diameter, and tapered shapes are simulated and the results are analyzed to determine the optimal design. The numerical results of droplet velocity and volume are compared with the experimental results of a cylindrical-shaped actuator. It is found that the micro actuators having tapered restrictors show better high frequency characteristics than those having a cylindrical shape without any notable decrease of droplet volume. The laser-fabricated restrictors demonstrate initial feasibility for the laser direct ablation technique although more development is required.

A Wire-overhead-free Reset Propagation Scheme for Millimeter-scale Sensor Systems

  • Lee, Inhee;Bang, Suyoung;Kim, Yejoong;Kim, Gyouho;Sylvester, Dennis;Blaauw, David;Lee, Yoonmyung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.4
    • /
    • pp.524-533
    • /
    • 2017
  • This paper presents a novel reset scheme for mm-scale sensing systems with stringent volume and area constraints. In such systems, multi-layer structure is required to maximize the silicon area per volume and minimize the system size. The multi-layer structure requires wirebonding connections for power delivery and communication among layers, but the area overhead for wirebonding pads can be significant. The proposed reset scheme exploits already existing power wires and thus does not require additional wires for system-wide reset operation. To implement the proposed reset scheme, a power management unit is designed to impose reset condition, and a reset detector is designed to interpret the reset condition indicated by the power wires. The reset detector uses a coupling capacitor for the initial power-up and a feedback path to hold the developed supply voltage. The prototype reset detector is fabricated in a $180-{\mu}m$ CMOS process, and the measurement results with the prototype mm-scale system confirmed robust reset operation over a wide range of temperatures and voltages.

Should Workers Avoid Consumption of Chilled Fluids in a Hot and Humid Climate?

  • Brearley, Matt B.
    • Safety and Health at Work
    • /
    • v.8 no.4
    • /
    • pp.327-328
    • /
    • 2017
  • Despite provision of drinking water as the most common method of occupational heat stress prevention, there remains confusion in hydration messaging to workers. During work site interactions in a hot and humid climate, workers commonly report being informed to consume tepid fluids to accelerate rehydration. When questioned on the evidence supporting such advice, workers typically cite that fluid absorption is delayed by ingestion of chilled beverages. Presumably, delayed absorption would be a product of fluid delivery from the gut to the intestines, otherwise known as gastric emptying. Regulation of gastric emptying is multifactorial, with gastric volume and beverage energy density the primary factors. If gastric emptying is temperature dependent, the impact of cooling is modest in both magnitude and duration (${\leq}5$ minutes) due to the warming of fluids upon ingestion, particularly where workers have elevated core temperature. Given that chilled beverages are most preferred by workers, and result in greater consumption than warm fluids during and following physical activity, the resultant increased consumption of chilled fluids would promote gastric emptying through superior gastric volume. Hence, advising workers to avoid cool/cold fluids during rehydration appears to be a misinterpretation of the research. More appropriate messaging to workers would include the thermal benefits of cool/cold fluid consumption in hot and humid conditions, thereby promoting autonomy to trial chilled beverages and determine personal preference. In doing so, temperature-based palatability would be maximized and increase the likelihood of workers maintaining or restoring hydration status during and after their work shift.

Modified Five Field Technique for Primary and Postop Breast Cancer Irradiation (유방암에서의 근치적 또는 수술후 방사선 치료방법 : 5문 조사법)

  • Choi, Eun-Kyung;Chang, Hye-Sook;Yi, Byong-Yong
    • Radiation Oncology Journal
    • /
    • v.9 no.1
    • /
    • pp.165-170
    • /
    • 1991
  • In breast cancer, the treatment volume presents a relatively complex three dimensional structure. Effective radiation therapy requires the delivery of adequate dose to a large target volume using complex beam arrangements. The technique proposed here is our department's method using asymmetric jaw with appropriate couch, collimator and gantry rotation. This technique has the following advantages: 1) all treatments are given in a single clinical set up 2) it does not require half beam blocks 3) it produces exact geomatric match 4) it is very convenient and easy to use 5) it has daily reproducibility.

  • PDF

Physicochemical Characteristics of Fe3O4 Magnetic Nanocomposites Based on Poly(N-isopropylacrylamide) for Anti-cancer Drug Delivery

  • Davaran, Soodabeh;Alimirzalu, Samira;Nejati-Koshki, Kazem;Nasrabadi, Hamid Tayefi;Akbarzadeh, Abolfazl;Khandaghi, Amir Ahmad;Abbasian, Mojtaba;Alimohammadi, Somayeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.49-54
    • /
    • 2014
  • Background: Hydrogels are a class of polymers that can absorb water or biological fluids and swell to several times their dry volume, dependent on changes in the external environment. In recent years, hydrogels and hydrogel nanocomposites have found a variety of biomedical applications, including drug delivery and cancer treatment. The incorporation of nanoparticulates into a hydrogel matrix can result in unique material characteristics such as enhanced mechanical properties, swelling response, and capability of remote controlled actuation. Materials and Methods: In this work, synthesis of hydrogel nanocomposites containing magnetic nanoparticles are studied. At first, magnetic nanoparticles ($Fe_3O_4$) with an average size 10 nm were prepared. At second approach, thermo and pH-sensitive poly (N-isopropylacrylamide -co-methacrylic acid-co-vinyl pyrrolidone) (NIPAAm-MAA-VP) were prepared. Swelling behavior of co-polymer was studied in buffer solutions with different pH values (pH=5.8, pH=7.4) at $37^{\circ}C$. Magnetic iron oxide nanoparticles ($Fe_3O_4$) and doxorubicin were incorporated into copolymer and drug loading was studied. The release of drug, carried out at different pH and temperatures. Finally, chemical composition, magnetic properties and morphology of doxorubicin-loaded magnetic hydrogel nanocomposites were analyzed by FT- IR, vibrating sample magnetometry (VSM), scanning electron microscopy (SEM). Results: The results indicated that drug loading efficiency was increased by increasing the drug ratio to polymer. Doxorubicin was released more at $40^{\circ}C$ and in acidic pH compared to that $37^{\circ}C$ and basic pH. Conclusions: This study suggested that the poly (NIPAAm-MAA-VP) magnetic hydrogel nanocomposite could be an effective carrier for targeting drug delivery systems of anti-cancer drugs due to its temperature sensitive properties.

Artificial Insemination and Delivery Rate of Crossbred Goat using Frozen-Thawed Semen (동결정액을 활용한 교잡종 염소의 인공수정 효율 및 분만율 조사)

  • Kim, Kwan-Woo;Lee, Eun-Do;Lee, Jinwook;Kim, Dong-Kyo;Lee, Sung-Soo;Lee, Sang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.181-186
    • /
    • 2020
  • This study examined the artificial fertilization efficiency of crossbred goats from a farmhouse using frozen semen. Electrostimulation was used to ejaculate and collect semen to assess the artificial fertilization efficiency of crossbred goats. The sperm concentration, vitality, and vitality after melting were investigated. The sperm volume was within 2.5~3 ml, and the concentration was 21~25 × 108/ml for each male crossbred goat. The melted semen had high vitality (≥90%). An IDEXX Rapid Visual Pregnancy Test kit was used for an earlier diagnosis of the pregnancy and to determine the pregnancy rate of fertilization using frozen-thawed semen. The reproductive performance of the artificially fertilized crossbred goats had the highest delivery rate (68%) from Farm C and the lowest delivery rate (45%) from farm A. The delivery rate through artificial fertilization was equal to the fertilization rate according to early pregnancy diagnostic kits. The artificial insemination efficiency was 45~68%. These findings can be used as the basis for improvement and breeding goats in goat farms and livestock research institutes.