• 제목/요약/키워드: Deletion mutants

검색결과 175건 처리시간 0.022초

Deletion Analysis of the Major NF-${\kappa}B$ Activation Domain in Latent Membrane Protein 1 of Epstein-Barr Virus

  • Cho, Shin;Lee, Won-Keun
    • Journal of Microbiology
    • /
    • 제37권4호
    • /
    • pp.256-262
    • /
    • 1999
  • Latent membrane protein 1 (LMP1) of the Epstein-Barr virus (EBV) is an integral membrane protein with six transmembrane domains, which is essential for EBV-induced B cell transformation. LMP1 functions as a constitutively active tumor necrosis factor receptor (TNFR) like membrane receptor, whose signaling requires recruitment of TNFR-associated factors (TRAFs) and leads to NF-${\kappa}B$ activation. NF-${\kappa}B$ activation by LMP1 is critical for B cell transformation and has been linked to many phenotypic changes associated with EBV-induced B cell transformation. Deletion analysis has identified two NF-${\kappa}B$ activation regions in the carboxy terminal cytoplasmic domains of LMP1, termed CTAR1 (residues 194-232) and CTAR2 (351-386). The membrane proximal C-terminal domain was precisely mapped to a PXQXT motif (residues 204-208) involved in TRAF binding as well as NF-${\kappa}B$ activation. In this study, we dissected the CTAR2 region, which is the major NF-${\kappa}B$ signaling effector of LMP1, to determine a minimal functional sequence. A series of LMP1 mutant constructs systematically deleted for the CTAR2 region were prepared, and NF-${\kappa}B$ activation activity of these mutants were assessed by transiently expressing them in 293 cells and Jurkat T cells. The NF-${\kappa}B$ activation domain of CTAR2 appears to reside in a stretch of 6 amino acids (residues 379-384) at the end of the carboxy terminus.

  • PDF

Genome-wide Drug-induced Haploinsufficiency Screening of Fission Yeast for Identification of Hydrazinocurcumin Targets

  • Baek, Seung-Tae;Kim, Dong-Uk;Han, Sang-Jo;Woo, Im-Sun;Nam, Mi-Young;Kim, Li-La;Heo, Kyung-Sun;Lee, Hye-Mi;Hwang, Hye-Rim;Choi, Shin-Jung;Won, Mi-Sun;Lee, Min-Ho;Park, Song-Kyu;Lee, Sung-Hou;Kwon, Ho-Jeong;Maeng, Pil-Jae;Park, Hee-Moon;Park, Young-Woo;Kim, Dong-Sup;Hoe, Kwang-Lae
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.263-269
    • /
    • 2008
  • Hydrazinocurcumin (HC), a synthetic derivative of curcumin, has been reported to inhibit angiogenesis via unknown mechanisms. Understanding the molecular mechanisms of the drug's action is important for the development of improved compounds with better pharmacological properties. A genome-wide drug-induced haploinsufficiency screening of fission yeast gene deletion mutants has been applied to identify drug targets of HC. As a first step, the 50% inhibition concentration $(IC_{50})$ of HC was determined to be $2.2{\mu}M$. The initial screening of 4,158 mutants in 384-well plates using robotics was performed at concentrations of 2, 3, and $4{\mu}M$. A second screening was performed to detect sensitivity to HC on the plates. The first screening revealed 178 candidates, and the second screening resulted in 13 candidates, following the elimination of 165 false positives. Final filtering of the condition-dependent haploinsufficient genes gave eight target genes. Analysis of the specific targets of HC has shown that they are related to septum formation and the general transcription processes, which may be related to histone acetyltransferase. The target mutants showed 65% growth inhibition in response to HC compared with wild-type controls, as shown by liquid culture assay.

Downregulation of EHT1 and EEB1 in Saccharomyces cerevisiae Alters the Ester Profile of Wine during Fermentation

  • Yang, Xue;Zhang, Xuenan;He, Xi;Liu, Canzhen;Zhao, Xinjie;Han, Ning
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권6호
    • /
    • pp.761-767
    • /
    • 2022
  • EHT1 and EEB1 are the key Saccharomyces cerevisiae genes involved in the synthesis of ethyl esters during wine fermentation. We constructed single (Δeht1, Δeeb1) and double (Δeht1Δeeb1) heterogenous mutant strains of the industrial diploid wine yeast EC1118 by disrupting one allele of EHT1 and/or EEB1. In addition, the aromatic profile of wine produced during fermentation of simulated grape juice by these mutant strains was also analyzed. The expression levels of EHT1 and/or EEB1 in the relevant mutants were less than 50% of the wild-type strain when grown in YPD medium and simulated grape juice medium. Compared to the wild-type strain, all mutants produced lower amounts of ethyl esters in the fermented grape juice and also resulted in distinct ethyl ester profiles. ATF2, a gene involved in acetate ester synthesis, was expressed at higher levels in the EEB1 downregulation mutants compared to the wild-type and Δeht1 strains during fermentation, which was consistent with the content of acetate esters. In addition, the production of higher alcohols was also markedly affected by the decrease in EEB1 levels. Compared to EHT1, EEB1 downregulation had a greater impact on the production of acetate esters and higher alcohols, suggesting that controlling EEB1 expression could be an effective means to regulate the content of these aromatic metabolites in wine. Taken together, the synthesis of ethyl esters can be decreased by deleting one allele of EHT1 and EEB1 in the diploid EC1118 strain, which may modify the ester profile of wine more subtly compared to the complete deletion of target genes.

MoJMJD6, a Nuclear Protein, Regulates Conidial Germination and Appressorium Formation at the Early Stage of Pathogenesis in Magnaporthe oryzae

  • Li Zhang;Dong Li;Min Lu;Zechi Wu;Chaotian Liu;Yingying Shi;Mengyu Zhang;Zhangjie Nan;Weixiang Wang
    • The Plant Pathology Journal
    • /
    • 제39권4호
    • /
    • pp.361-373
    • /
    • 2023
  • In plant-pathogen interactions, Magnaporthe oryzae causes blast disease on more than 50 species of 14 monocot plants, including important crops such as rice, millet, and most 15 recently wheat. M. oryzae is a model fungus for studying plant-microbe interaction, and the main source for fungal pathogenesis in the field. Here we report that MoJMJD6 is required for conidium germination and appressorium formation in M. oryzae. We obtained MoJMJD6 mutants (ΔMojmjd6) using a target gene replacement strategy. The MoJMD6 deletion mutants were delayed for conidium germination, glycogen, and lipid droplets utilization and consequently had decreased virulence. In the ΔMojmjd6 null mutants, global histone methyltransferase modifications (H3K4me3, H3K9me3, H3K27me3, and H3K36me2/3) of the genome were unaffected. Taken together, our results indicated that MoJMJD6 function as a nuclear protein which plays an important role in conidium germination and appressorium formation in the M. oryzae. Our work provides insights into MoJMJD6-mediated regulation in the early stage of pathogenesis in plant fungi.

환경 스트레스에 의한 세포 내 신호의 이동 경로와 유전적 조절 (Genetic Regulation of Cellular Responses and Signal Targeting Pathways Invoked by an Environmental Stress)

  • 김일섭;김현영;강홍규;윤호성
    • 환경생물
    • /
    • 제26권4호
    • /
    • pp.377-384
    • /
    • 2008
  • A cell is the product of a long period of evolution and can be represented as an optimized system (homeostasis). Stimuli from the outside environment are received by sensory apparatus on the surface of the cell and transferred through complicated pathways and eventually regulate gene expression. These signals affect cell physiology, growth, and development, and the interaction among genes in the signal transduction pathway is a critical part of the regulation. In this study, the interactions of deletion mutants and overexpression of the extracopies of the genes were used to understand their relationships to each other. Also, green fluorescent protein (GFP reporter gene) was fused to the regulatory genes to elucidate their interactions. Cooverexpression of the two genes in extracopy plasmids suggested that patS acts at the downstream of hetR in the regulatory network. The experiments using gfp fusion in different genetic background cells also indicated the epistasis relationships between the two genes. A model describing the regulatory network that controls cell development is presented.

Allele-Specific Phenotype Suggests a Possible Stimulatory Activity of RCAN-1 on Calcineurin in Caenorhabditis elegans

  • Li, Weixun;Choi, Tae-Woo;Ahnn, Joohong;Lee, Sun-Kyung
    • Molecules and Cells
    • /
    • 제39권11호
    • /
    • pp.827-833
    • /
    • 2016
  • Regulator of calcineurin 1 (RCAN1) binds to calcineurin through the PxIxIT motif, which is evolutionarily conserved. SP repeat phosphorylation in RCAN1 is required for its complete function. The specific interaction between RCAN1 and calcineurin is critical for calcium/calmodulin-dependent regulation of calcineurin serine/threonine phosphatase activity. In this study, we investigated two available deletion rcan-1 mutants in Caenorhabditis elegans, which proceed differently for transcription and translation. We found that rcan-1 may be required for calcineurin activity and possess calcineurin-independent function in body growth and egg-laying behavior. In the genetic background of enhanced calcineurin activity, the rcan-1 mutant expressing a truncated RCAN-1 which retains the calcineurin-binding PxIxIT motif but misses SP repeats stimulated growth, while rcan-1 lack mutant resulted in hyperactive egg-laying suppression. These data suggest rcan-1 has unknown functions independent of calcineurin, and may be a stimulatory calcineurin regulator under certain circumstances.

Expression and characterization of transmembrane and coiled-coil domain family 3

  • Sohn, Wern-Joo;Kim, Jae-Young;Kim, Dongbum;Park, Jeong-A;Lee, Younghee;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • 제49권11호
    • /
    • pp.629-634
    • /
    • 2016
  • Transmembrane and coiled-coil domain family 3 (TMCC3) has been reported to be expressed in the human brain; however, its function is still unknown. Here, we found that expression of TMCC3 is higher in human whole brain, testis and spinal cord compared to other human tissues. TMCC3 was expressed in mouse developing hind brain, lung, kidney and somites, with strongest expression in the mesenchyme of developing tongue. By expression of recombinant TMCC3 and its deletion mutants, we found that TMCC3 proteins self-assemble to oligomerize. Immunostaining and confocal microscopy data revealed that TMCC3 proteins are localized in endoplasmic reticulum through transmembrane domains. Based on immunoprecipitation and mass spectroscopy data, TMCC3 proteins associate with TMCC3 and 14-3-3 proteins. This supports the idea that TMCC3 proteins form oligomers and that 14-3-3 may be involved in the function of TMCC3. Taken together, these results may be useful for better understanding of uncharacterized function of TMCC3.

Identification of Positive and Negative Regulatory Elements of the Human Cytochrome P4501A2 (CYP1A2) Gene

  • Chung, Injae;Jeong, Choonsik;Jung, Kihwa;Bresnick, Edward
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1997년도 춘계학술대회
    • /
    • pp.81-81
    • /
    • 1997
  • We previously demonstrated an enhancer-like positive regulatory element within a 259-bp sequence (-2352 to-2094 bp) of the human CYP1A2 gene in HepG2 cells. Three protein binding sites were identified by DNase I footprint analyses within the 259-bp sequence: protected region A PRA ( -2283 to-2243 bp), PRB (-2218 to-2187 bp), and PRC (-2124 to-2098 bp) (I. Chung and E. Bresnick, Mol. Pharmacol. 47, 677-685, 1995). In the present study, the functional significance of those protected regions was examined. Transfection experiments with deletion and substitution mutants defined the PRB and PRC as containing positive and negative regulatory elements, respectively. Human breast carcinoma MCF-7 cells were cotransfected with a hepatocyte nuclear factor-1 (HNF-1) expression vector and CYP1A2 promoter-or thymidine kinase promoter-luciferase remoter gene constructs. HNF-1, which contributes to the liver specificity of genes, enhanced reporter gene activity in a PRC sequence-dependent manner. These results suggested that PRC could exist bound to a repressor which was displaceable by other transcription factors such as HNF-1. Results obtained by transfection of HepG2 hepatoma cells with various PRB substitution mutant-luciferase gene fusion constructs indicated that the entire sequence of PRB was necessary for promoter activity. Consequently, the regulation of CYP1A3 expression is very complex, requiring a number of both positive and negative regulatory factors.

  • PDF

Functional Characterization of the Madlp, a Spindle Checkpoint Protein in Fission Yeast

  • Kim, In-Gyu;Rhee, Dong-Keun;Lee, Hee-Cheul;Lee, Joo;Kim, Hyong-Bai
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권4호
    • /
    • pp.694-700
    • /
    • 2005
  • Defects in the mitotic spindle or in the attachment of chromosomes to the spindle are believed to release an activated form of spindle checkpoint complex that inhibits APC-dependent ubiquitination and subsequently arrests the cell cycle at metaphase. When the spindle assembly is disrupted, the fission yeast mitotic arrest deficient (mad) mutants fail to arrest and rapidly lose viability. To enhance our understanding of the molecular mechanisms for the pathway of checkpoint function, the functional characterizations of Mad 1 p from Schizosaccharomyces pombe involved in this process have been carried out. Yeast two-hybrid and various deletion analyses of S. pombe Mad1 p reveal that the C terminus of Mad1p is critical for the binding of Mad2p and maintenance of Mad 1 p-Mad2p interaction. In addition, it was found. that the Mad1p region (residues 206-356) is essential for Mad1p-other checkpoint components. Mad1p truncating this region is sufficient to bind Mad2p but abolishes the checkpoint function, indicating that the checkpoint function is necessary for interaction of Mad 1 p-other checkpoint components. The possible functions of S. pombe Mad1p at the cell cycle checkpoint are discussed.

Role of Dual Flagella in the Pathogenesis of Vibrio parahaemolyticus

  • Lee, Hwa-Gyu;Jeong, Byung-Gon;Park, Kwon-Sam
    • Fisheries and Aquatic Sciences
    • /
    • 제14권2호
    • /
    • pp.73-78
    • /
    • 2011
  • Vibrio parahaemolyticus possesses two flagella systems: polar and lateral flagella for swimming in liquid and swarming on solid surfaces or in viscous environments. To elucidate the pathogenic role of these dual flagella systems, we constructed single- and double-deletion mutants of the lafA and flhAB flagellum genes and investigated their biofilm formation, cell adhesion, and colonization of the small intestine of suckling mice. The double-mutant strain was more impaired in biofilm formation than either of the single-mutant strains. In addition, the lafA, flhAB, and double-mutant strains showed 40%, 45%, and 60%, respectively, lower adherence to HeLa cells than the wild-type strain. Moreover, the lafA, flhAB, and double-mutant strains exhibited 49%, 5.6 and 6.7 times, respectively, lower colonization in a competition assay than the wild-type strain. These findings indicated that polar flagella were more important than lateral flagella for the pathogenesis of V. parahaemolyticus.