• 제목/요약/키워드: Delayed Hydride Crack

검색결과 17건 처리시간 0.019초

Zr-2.5Nb 압력관에서 Striation Spacing과 DHCV의 관계 (A Correlation of Striation Spacing and DHC Velocity in Zr-2.5Nb Tubes)

  • 최승준;안상복;박순삼;김영석
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1109-1115
    • /
    • 2004
  • The objective of this study is to elucidate what governs delayed hydride cracking (DHC) in Zr-2.5Nb tubes by correlating the striation spacings with DHCV(DHC Velocity). To this end, DHC tests were conducted on the compact tension specimens taken from the Zr-2.5Nb tubes at different temperatures ranging from 100 to $300^{\circ}C$ with a 3 to 6 data set at each test conditions. The compact tension specimens were electrolytically charged with 27 to 87 ppm H before DHC tests. After DHC tests, the striation spacings and DHCV were determined with the increasing the test temperature and yield strength. The striation spacing and DHCV increased as a function of yield $strength^2$ and the temperature. Since the plastic zone size ahead of the crack tip can be represented by ${\sim}(K_{IH}/{\sigma}_{Y})^2$, we conclude that the striation spacing is governed by the plastic zone size which in turn determines a gradient of hydrogen concentration at the crack tip. The relationship between the plastic zone size and the striation spacing was validated through a complimentary experiment using double cantilever beam specimens. Two main factors to govern DHCV of Zr-2.5Nb tubes are concluded to be hydrogen diffusion and a hydrogen concentration gradient at the crack tip that are controlled by temperature and yield strength, respectively. The activation energy of DHCV in the Zr-2.5Nb tubes is discussed on the basis of temperature dependency of hydrogen diffusion and the striation spacing.

Zr-2.5Nb 중수로 압력관의 수소지연파괴에 미치는 압력관 두께의 영향 (Effect of an Increased Wall Thickness on Delayed Hydride Cracking in Zr-2.5Nb Pressure Tube)

  • Jeong, Yong-Hwan;Kim, Young-Suk
    • Nuclear Engineering and Technology
    • /
    • 제27권2호
    • /
    • pp.226-233
    • /
    • 1995
  • CANDU 원자로에서 심각하게 대두되는 압력관 파손을 방지하기 위해 압력관의 두께를 증가시키는 방안이 연구되었다. 본 연구에서는 압력관 두께변화가 Zr-2.5Nb 압력관의 응력, 수소농도 및 수소지연파괴에 미치는 영향에 대해 연구를 수행하였다. 압력관 두께가 현재의 4.2 mm에서 5.2 mm로 증가할 경우에 압력관이 받는 응력과 발전소 가동중에 누적되는 중수소 흡수량은 19% 줄어드는 것으로 나타났으며, 압력관에 균열이 발생할 경우 발전소 냉각동안에 일어나는 균열 성장은 상당히 감소한다. 수소지연파괴는 압력관이 받는 응력과 누적되는 수소량에 비해 지배되는데 이와 같은 결과로부터 두꺼운 압력관은 수소지연파괴 관점에서 상당한 이점이 있는 것으로 평가되었다. 그러나 압력관 두께 증가는 수소지연파괴의 성장속도를 가속할수도 있으므로 앞으로 연구할 사항이다.

  • PDF

Three-dimensional numerical simulation of hydrogen-induced multi-field coupling behavior in cracked zircaloy cladding tubes

  • Xia, Zhongjia;Wang, Bingzhong;Zhang, Jingyu;Ding, Shurong;Chen, Liang;Pang, Hua;Song, Xiaoming
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.238-248
    • /
    • 2019
  • In the high-temperature and high-pressure irradiation environments, the multi-field coupling processes of hydrogen diffusion, hydride precipitation and mechanical deformation in Zircaloy cladding tubes occur. To simulate this hydrogen-induced complex behavior, a multi-field coupling method is developed, with the irradiation hardening effects and hydride-precipitation-induced expansion and hardening effects involved in the mechanical constitutive relation. The out-pile tests for a cracked cladding tube after irradiation are simulated, and the numerical results of the multi-fields at different temperatures are obtained and analyzed. The results indicate that: (1) the hydrostatic stress gradient is the fundamental factor to activate the hydrogen-induced multi-field coupling behavior excluding the temperature gradient; (2) in the local crack-tip region, hydrides will precipitate faster at the considered higher temperatures, which can be fundamentally attributed to the sensitivity of TSSP and hydrogen diffusion coefficient to temperature. The mechanism is partly explained for the enlarged velocity values of delayed hydride cracking (DHC) at high temperatures before crack arrest. This work lays a foundation for the future research on DHC.

결함발생 시점을 고려한 CANDU 압력관 결함의 확률론적 건전성평가 (Probabilistic Integrity Assessment of CANDU Pressure Tube for the Consideration of Flaw Generation Time)

  • 곽상록;이준성;김영진;박윤원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.155-160
    • /
    • 2001
  • This paper describes a probabilistic fracture mechanics (PFM) analysis based on Monte Carlo (MC) simulation. In the analysis of CANDU pressure tube, it is necessary to perform the PFM analyses based on statistical consideration of flaw generation time. A depth and an aspect ratio of initial semi-elliptical surface crack, a fracture toughness value, delayed hydride cracking (DHC) velocity, and flaw generation time are assumed to be probabilistic variables. In all the analyses, degradation of fracture toughness due to neutron irradiation is considered. Also, the failure criteria considered are plastic collapse, unstable fracture and crack penetration. For the crack growth by DHC, the failure probability was evaluated in due consideration of flaw generation time.

  • PDF

가동중 중수로 압력관의 외경과 두꼐 변화를 고려한 결함의 파손확률 예측 (Failure Probability Estimation of Flaw in CANDU Pressure Tube Considering the Dimensional Change)

  • 곽상록;이준성;김영진;박윤원
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2305-2311
    • /
    • 2002
  • The pressure tube is a major component of the CANDU reactor, which supports nuclear fuel bundle and heavy water coolant. Pressure tubes are installed horizontally inside the reactor and only selected samples are periodically examined during in-service inspection. In this respect, a probabilistic safety assessment method is more appropriate fur the assessment of overall pressure tube safety. The failure behavior of CANDU pressure tubes, however, is governed by delayed hydride cracking which is the major difference from pipings and reactor pressure vessels. Since the delayed hydride cracking has more widely distributed governing parameters, it is impossible to apply a general PFM methodology directly. In this paper, a PFM methodology for the safety assessment of CANDU pressure tubes is introduced by applying Monte Carlo simulation in determining failure probability Initial hydrogen concentration, flaw shape and depth, axial and radial crack growth rate and fracture toughness were considered as probabilistic variables. Parametric study has been done under the base of pressure tube dimension and hydride precipitation temperature in calculating failure probability. Unstable fracture and plastic collapse are used for the failure assessment. The estimated failure probability showed about three-order difference with changing dimensions of pressure tube.

확률론적 파괴역학을 도입한 CANDU 압력관의 예리한 결함에 대한 건전성평가 (Integrity Assessment of Sharp Flaw in CANDU Pressure Tube Using Probabilistic Fracture Mechanics)

  • 이준성;곽상록;김영진;박윤원
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.653-659
    • /
    • 2002
  • This paper describes a probabilistic fracture mechanics(PFM) analysis based on Monte Carlo(MC) simulation. In the analysis of CANDU pressure tube, the depth and aspect ratio of an initial semi-elliptical surface crack, a fracture toughness value and delayed hydride cracking(DHC) velocity are assumed to be probabilistic variables. As an example, some failure probabilities of piping and CANDU pressure tube are calculated using MC method with the stratified sampling MC technique, taking analysis conditions of normal operations. In the stratified MC simulation, a sampling space of probabilistic variables is divided into a number of small cells. For the verification of analysis results, a comparison study of the PFM analysis using other commercial code is carried out and a good agreement was observed between those results.