• Title/Summary/Keyword: Delay Bound

Search Result 194, Processing Time 0.025 seconds

Towards Achieving the Maximum Capacity in Large Mobile Wireless Networks under Delay Constraints

  • Lin, Xiaojun;Shroff, Ness B.
    • Journal of Communications and Networks
    • /
    • v.6 no.4
    • /
    • pp.352-361
    • /
    • 2004
  • In this paper, we study how to achieve the maximum capacity under delay constraints for large mobile wireless networks. We develop a systematic methodology for studying this problem in the asymptotic region when the number of nodes n in the network is large. We first identify a number of key parameters for a large class of scheduling schemes, and investigate the inherent tradeoffs among the capacity, the delay, and these scheduling parameters. Based on these inherent tradeoffs, we are able to compute the upper bound on the maximum per-node capacity of a large mobile wireless network under given delay constraints. Further, in the process of proving the upper bound, we are able to identify the optimal values of the key scheduling parameters. Knowing these optimal values, we can then develop scheduling schemes that achieve the upper bound up to some logarithmic factor, which suggests that our upper bound is fairly tight. We have applied this methodology to both the i.i.d. mobility model and the random way-point mobility model. In both cases, our methodology allows us to develop new scheduling schemes that can achieve larger capacity than previous proposals under the same delay constraints. In particular, for the i.i.d. mobility model, our scheme can achieve (n-1/3/log3/2 n) per-node capacity with constant delay. This demonstrates that, under the i.i.d. mobility model, mobility increases the capacity even with constant delays. Our methodology can also be extended to incorporate additional scheduling constraints.

Reinforcement Learning-based Duty Cycle Interval Control in Wireless Sensor Networks

  • Akter, Shathee;Yoon, Seokhoon
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.19-26
    • /
    • 2018
  • One of the distinct features of Wireless Sensor Networks (WSNs) is duty cycling mechanism, which is used to conserve energy and extend the network lifetime. Large duty cycle interval introduces lower energy consumption, meanwhile longer end-to-end (E2E) delay. In this paper, we introduce an energy consumption minimization problem for duty-cycled WSNs. We have applied Q-learning algorithm to obtain the maximum duty cycle interval which supports various delay requirements and given Delay Success ratio (DSR) i.e. the required probability of packets arriving at the sink before given delay bound. Our approach only requires sink to compute Q-leaning which makes it practical to implement. Nodes in the different group have the different duty cycle interval in our proposed method and nodes don't need to know the information of the neighboring node. Performance metrics show that our proposed scheme outperforms existing algorithms in terms of energy efficiency while assuring the required delay bound and DSR.

Maximum Allowable Delay Bounds and Real-time Scheduling Method of Networked Discrete-time Control Systems (네트워크 기반 이산 시간 제어 시스템의 최대 허용 지연 한계 및 실시간 스케줄링 기법에 관한 연구)

  • Kim Dong-Sung;Choi Dong-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.719-727
    • /
    • 2006
  • This paper proposes a new method to obtain a maximum allowable delay bound for a scheduling of networked discrete control systems and event-based scheduling method. The proposed method is formulated in terms of linear matrix inequalities and can give a much less conservative delay bound than the existing methods. A network scheduling method is presented based on the delay obtained through the proposed method, and it can adjust the sampling period to allocate same utilization to each control loop. The presented method can handle three types of data (sporadic, emergency data, periodic data and non real-time message) and guarantees real-time transmission of periodic and sporadic emergency data using modified EDF scheduling method.

Stability Bound for Time-Varying Uncertainty of Time-varying Discrete Interval System with Time-varying Delay Time (시변 지연시간을 갖는 이산 구간 시변 시스템의 시변 불확실성의 안정범위)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.608-613
    • /
    • 2017
  • In this paper, we consider the stability bound for uncertainty of delayed state variables in the linear discrete interval time-varying systems with time-varying delay time. The considered system has an interval time-varying system matrix for non-delayed states and is perturbed by the unstructured time-varying uncertainty in delayed states with time-varying delay time within fixed interval. Compared to the previous results which are derived for time-invariant cases and can not be extended to time-varying cases, the new stability bound in this paper is applicable to time-varying systems in which every factors are considered as time-varying variables. The proposed result has no limitation in applicable systems and is very powerful in the aspects of feasibility compared to the previous. Furthermore. the new bound needs no complex numerical algorithms such as LMI(Linear Matrix Inequality) equation or upper solution bound of Lyapunov equation. By numerical examples, it is shown that the proposed bound is able to include the many existing results in the previous literatures and has better performances in the aspects of expandability and effectiveness.

Routing Algorithm for the Real-time Traffic Processing in the Internet (인터넷에서 실시간 트래픽 처리를 위한 라우팅 알고리즘)

  • 임철수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.181-181
    • /
    • 2000
  • We identified the performance problems of scheduling algorithms such as FCFS, and demonstrated the superiority of WFQ in terms of realtime performance measures. For this purpose, we presented the service scenario and performed the analysis for the delay bound and fairness which are required to support the realtime applications in the Internet.

  • PDF

Flow Aggregation Criteria in Networks with Rate-Guaranteeing Servers

  • Joung, Jin-Oo;Song, Jong-Tae;Lee, Soon-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12B
    • /
    • pp.1097-1102
    • /
    • 2008
  • An effective method for calculating delay bounds of flows through flow aggregations and deaggregations is given. Based on this calculation, it is suggested a simple criteria for flow aggregation whether the aggregation will induce an increased delay bound. The criteria is evaluated in a few realistic scenarios.

Sequential Paging under Delay Bound for Next Generation Mobile Systems (차세대 이동통신에서의 지연을 고려한 순차적 페이징)

  • Lee, Chae-Yong;Ku, Sang-Hoon
    • Korean Management Science Review
    • /
    • v.23 no.3
    • /
    • pp.13-25
    • /
    • 2006
  • To reduce the signaling tost of paging in mobile communication, sequential paging schemes are proposed by partitioning a location area into several paging areas such that each area is paged sequentially. Necessary conditions for the optimal partition of cells with delay bound are examined by considering the mobiles location probability at each cell. The Optimal Cell Partitioning (OCP) is proposed based on the necessary conditions and the fathoming rule which trims off the unnecessary solution space and expedite the search process. Two Heuristics, BSG and BNC are also presented to further increase the computational efficiency in real-world paging scheme for the next generation mobile systems. The effectiveness of the 1)reposed paging schemes is illustrated with computational results. The Heuristic BSG that performs the search in the most promising solution group outperforms the best existing procedure with the 6-69% gain in paging cost in problems with 100 cells.

Duty Cycle Scheduling considering Delay Time Constraints in Wireless Sensor Networks (무선네트워크에서의 지연시간제약을 고려한 듀티사이클 스케쥴링)

  • Vu, Duy Son;Yoon, Seokhoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.169-176
    • /
    • 2018
  • In this paper, we consider duty-cycled wireless sensor networks (WSNs) in which sensor nodes are periodically dormant in order to reduce energy consumption. In such networks, as the duty cycle interval increases, the energy consumption decreases. However, a higher duty cycle interval leads to the increase in the end-to-end (E2E) delay. Many applications of WSNs are delay-sensitive and require packets to be delivered from the sensr nodes to the sink with delay requirements. Most of existing studies focus on only reducing the E2E delay, rather than considering the delay bound requirement, which makes hard to achieve the balanced performance between E2E delay and energy consumption. A few study that considered delay bound requirement require time synchronization between neighboring nodes or a specific distribution of deployed nodes. In order to address limitations of existing works, we propose a duty-cycle scheduling algorithm that aims to achieve low energy consumption, while satisfying the delay requirements. To that end, we first estimate the probability distribution for the E2E delay. Then, by using the obtained distribution we determine the maximal duty cycle interval that still satisfies the delay constraint. Simulation results show that the proposed design can satisfy the given delay bound requirements while achieving low energy consumption.

Stability on Time Delay Systems: A Survey (시간지연시스템의 안정성에 관한 연구동향)

  • Park, PooGyeon;Lee, Won Il;Lee, Seok Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.289-297
    • /
    • 2014
  • This article surveys the control theoretic study on time delay systems. Since time delay systems are infinite dimensional, there are not analytic but numerical solutions on almost analysis and synthesis problems, which implies that there are a tremendous number of approximated solutions. To show how to find such solutions, several results are summarized in terms of two different axes: 1) theoretic tools like integral inequality associated with the derivative of delay terms, Jensen inequality, lower bound lemma for reciprocal convexity, and Wirtinger-based inequality and 2) various candidates for Laypunov-Krasovskii functionals.

Dynamic Channel Time Allocation Scheme for Multimedia Traffic with Delay Bound in High-Rate Wireless PANs (고속율 무선 PAN에서 지연한도를 갖는 멀티미디어 트래픽을 위한 동적 채널시간할당 방법)

  • Kim Sun-Myeng;Cho Young-Jong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.1-12
    • /
    • 2005
  • In wireless personal area networks(PANs), the successful design of channel time allocation algorithm is a key factor in guaranteeing the various quality of service(QoS) requirements for the stringent real-time constraints of multimedia services. In this paper we propose a dynamic channel time allocation algerian for providing delay guarantees to multimedia traffics such as MPEG streams in the IEEE 802.15.3 high-rate WPANs. The dynamic algorithm exploits the characteristics of MPEG stream, wherein the devices (DEVs) send their channel time requests only at the end of superframe boundaries. The algerian uses mini packets for feedback control in order to deliver dynamic parameters for channel time requests from the DEVs to the piconet coordinator (PNC). In this scheme, the duration of channel time allocated to a DEV during a superframe is changed dynamically depending on the MPEG frame type, traffic load and delay bound of the frame, etc. Performance of the proposed scheme is investigated by simulation. Our results show that compared to traditional scheme, the proposed scheme is very effective and has high performance while guaranteeing the delay bound.