• Title/Summary/Keyword: Delamination Fracture

Search Result 176, Processing Time 0.023 seconds

Impact behavior on temperature effect of nano composite materials (온도변화에 따른 나노 복합재료의 충격거동)

  • KIM, Hyung-Jin;LEE, Jung-Kyu;KOH, Sung Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.4
    • /
    • pp.561-566
    • /
    • 2015
  • In this study, the effect of temperature effect of the rubber matrix filled with nano sized silica particles composites with silica volume fraction of 19-25% was investigated by the Charpy impact test. The Charpy impact test was conducted in the temperature range from $-40^{\circ}C$ to $0^{\circ}C$. The critical energy release rate GIC of the rubber matrix composites filled with nano sized silica particles was considerably affected by temperature and it was shown that the maximum value was appeared at higher temperature between temperature tested and it was shown that the value of GIC increases as temperature tested increases. The major fracture mechanisms were matrix deformation, silica particle debonding and delamination, microcrack between particles and matrix, and/or pull out between particles and matrix which is ascertained by SEM photographs of Charpy impact surfaces fracture.

High Strain-rate Deformation Behavior of NiAl/Ni Micro-laminated Composites (NiAl/Ni 미세적층복합재료의 고속변형거동)

  • Kim Hee-Yeoun;Kim Jin-Young;Jeong Dong-Seok;Enoki Manabu;Hong Soon-Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.237-240
    • /
    • 2004
  • High strain-rate deformation behavior of NiAl/Ni micro-laminated composites was characterized by split hopkins on pressure bar(SHPB). When the strain rate increased, the compressive stress of micro-laminated composites were increased a little. When the intermetallic volume fraction increased, the compressive stress of micro-laminated composites increased linearly irrespective of strain rate. Absorbed energy during the quasi-static and SHPB tests was calculated from the integrated area of stress-strain curve. Absorbed energy of micro-laminated composites deviated from the linearity in terms of the intermetallic volume fraction but merged to the value of intermetallic as the strain rate increased. This was due to high tendency of intermetallic layer for the localization of shear deformation at high strain rate. Microstructure showing adibatic shear band(ASB) confirmed that the shear strain calculated from the misalignment angle of each layer increased and ASB width decreased when the intermetallic volume fraction. Simulation test impacted by tungsten heavy alloy cylinder resulted that the absorbed energies multiplied by damaged volume of micro-laminated composites were decreased as the intermetallic volume fraction increased. Fracture mode were changed from delamination to single fracture when the intermetallic volume fraction and this results were good matched with previous results[l] obtained from the fracture tests.

  • PDF

Analytical solutions for crack initiation on floor-strata interface during mining

  • Zhao, Chongbin
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.237-255
    • /
    • 2015
  • From the related engineering principles, analytical solutions for horizontal crack initiation and propagation on a coal panel floor-underlying strata interface due to coal panel excavation are derived in this paper. Two important concepts, namely the critical panel width of horizontal crack initiation on the panel floor-underlying strata interface and the critical panel width of vertical fracture (crack) initiation in the panel floor, have been presented. The resulting analytical solution indicates that: (1) the first criterion can be used to express the condition under which horizontal plane cracks (on the panel floor-underlying strata interface or in the panel floor because of delamination) due to the mining induced vertical stress will initiate and propagate; (2) the second criterion can be used to express the condition under which vertical plane cracks (in the panel floor) due to the mining induced horizontal stress will initiate and propagate; (3) this orthogonal set of horizontal and vertical plane cracks, once formed, will provide the necessary weak network for the flow of gas to inrush into the panel. Two characteristic equations are given to quantitatively estimate both the critical panel width of vertical fracture initiation in the panel floor and the critical panel width of horizontal crack initiation on the interface between the panel floor and its underlying strata. The significance of this study is to provide not only some theoretical bases for understanding the fundamental mechanism of a longwall floor gas inrush problem but also a benchmark solution for verifying any numerical methods that are used to deal with this kind of gas inrush problem.

Temperature Effect on Tensile Fracture Behavior of Thermoplastic Glass Fiber/Polyethylene Composites (온도변화에 따른 열가소성 복합재료 유리섬유/폴리에틸렌의 인장파괴거동)

  • KOH S. W.;CHOI Y. K.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.326-330
    • /
    • 2004
  • Thermosetting matrix composites have disadvantages in terms of moulding time, repairability and manufacturing cost. Thus the high-performance thermoplastic composites to eliminate such disadvantages have been developed so far. As a result of environmental and economical concerns, there is a growing interest in the use of thermoplastic composites. However, since their mechanical properties are very sensitive to the environment such as moisture, temperature etc., those behaviors need to be studied. Particularly the temperature is a very important factor influencing the mechanical behavior of thermoplastic composites. The effect of temperature have not yet been fully quantified. Since engineering applications of reinforced composites necessitate their fracture mechanics characterization, work is in progress to investigate the fracture and related failure behavior. An approach which predicts the tensile strength was perpormed in the tensile test. The main goal of this work is to study the effect of temperature on the result of tensile test with respect to GF/PE composite. The tensile strength and failure mechanisms of GF/PE composites were investigated in the temperature range $60^{\circ}C\;to\;-50^{\circ}C$. The tensile strength increased as the fiber volume fraction ratio increased. The tensile strength showed the maximum at $-50^{\circ}C$, and it tended to decrease as the temperature increased from $-50^{\circ}C$. The major failure mechanisms was classified into the fiber matrix debonding, the fiber pull-out, the delamination and the matrix deformation.

  • PDF

A Study on the Tensile Fracture Behavior of Glass Fiber Polyethylene Composites (GF/PE 복합재료의 인장파괴거동에 관한 연구)

  • 엄윤성;고성위
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.2
    • /
    • pp.158-163
    • /
    • 2003
  • Thermosetting matrix composites have disadvantages in terms of moulding time, repairability and manufacturing cost. Thus the high-performance thermoplastic composites to eliminate such disadvantages have been developed so far. As a result of environmental and economical concerns, there is a growing interest in the use of thermoplastic composites. However, since their mechanical properties are very sensitive to the environment such as moisture, temperature etc., those behaviors need to be studied. Particularly the temperature is a very important factor influencing the mechanical behavior of thermoplastic composites. The effect of temperature have not yet been fully quantified. Since engineering applications of reinforced composites necessitate their fracture mechanic characterization, work is in progress to investigate the fracture and related failure behavior. An approach which predicts the tensile strength was perpormed in the tensile test. The main goal of this work is to study the effect of temperature on the result of tensile test with respect to GF/PE composite. The tensile strength and failure mechanisms of GF/PE composites were investigated in the temperature range 6$0^{\circ}C$ to -5$0^{\circ}C$. The tensile strength increased as the fiber volume fraction ratio increased. The tensile strength showed the maximum at -5$0^{\circ}C$, and it tended to decrease as the temperature increased from -5$0^{\circ}C$. The major failure mechanism was classified into the fiber matrix debonding, the fiber pull-out, the delamination and the matrix deformation.

Evaluation of Fracture Toughness Characteristics of Pultruded CFRP Spar-Cap Materials with Non-woven Glass Fabric for Wind Blade (유리섬유 부직포가 삽입된 풍력 블레이드 인발 성형 스파캡 소재의 파괴인성 특성 평가)

  • Young Cheol Kim;Geunsu Joo;Jisang Park;Woo-Kyoung Lee;Min-Gyu Kang;Ji Hoon Kim
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.83-90
    • /
    • 2023
  • The purpose of this study is to evaluate the inter-laminar fracture toughness characteristics of CFRP pultrusion spar cap materials reinforced with non-woven glass fabric. Test specimens were fabricated by the infusion technique. A non-woven glass fabric and artificial defects were embedded on the middle surface between two pultruded CFRP panels. Double cantilever beam (DCB) and End Notched Flexure (ENF) tests were performed according to ASTM standards. Fracture toughness and crack propagation characteristics were evaluated with load-displacement curves and delamination resistance curves (R-Curve). The fracture toughness results were calculated by compliance calibration (CC) method. The initiation and propagation values of Mode-I critical strain energy release rate value GIc were 1.357 kJ/m2 and 1.397 kJ/m2, respectively, and Mode-II critical strain energy release rate values GIIc were 4.053 kJ/m2 for non-precracked test and 4.547 kJ/m2 for precracked test. It was found that the fracture toughness properties of the CFRP pultrusion spar-cap are influenced by the interface between the layers of CFRP and glass fiber non-woven.

Acoustic Emission Characteristics of Notched Aluminum Plate Repaired with a Composite Patch (복합재 패치로 보수된 노치형 알루미늄 합금 평판의 음향방출 특성)

  • Yoon, Hyun-Sung;Choi, Nak-Sam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.53-61
    • /
    • 2011
  • Edge notched A16061-T6 aluminum was repaired with a GFRP composite patch as a function of the number of stacking, Damage progress of specimen for tension load has been monitored by acoustic emission(AE), AE energy rate, hit rate, amplitude, waveform and 1st peak frequency distribution were analyzed. Fracture processes were classified into Al cracking, Fiber breakage, Resin cracking and Delamination. Displacement of a specimen can be divided into Region I, II and ill according to acoustic emission characteristics. Region II where the patch itself was actually fractured was focused on to clarify the AE characteristics difference for the number of stacking.

Mechanical Strength Experiment of Carbon/Carbon Composite for Aircraft Brake Disk (탄소/탄소 브레이크 디스크의 기계적 강도 시험에 관한 연구)

  • 유재석;오세희;김천곤;홍창선;윤병일;김광수
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.55-62
    • /
    • 2000
  • The strength test was done for the Carbon/Carbon rotor disk which is the critical part of a carbon/carbon brake system in an operating time. The loading fixture was designed for the static strength test of a single carbon/carbon brake disk using finite element analysis. To simulate the real dynamic system in a static condition, the friction surface of the rotor disk was fixed and static load was applied to the rotor slot in the circumferential direction. The described failure mechanism of the brake disk can be described as matrix cracking occurred first at the contact surface of the rotor slot, subsequent delamination from the cracked contact surface, and the final fracture at the notch of the rotor.

  • PDF

Influence of Layer Thickness on the Mechanical Properties in the Laminated Composites (적층형 복합재료에서 Unit Ply의 두께가 기계적 성질에 미치는 영향)

  • Mun, Chang-Gwon
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.979-987
    • /
    • 1995
  • This study has been investigated the Influence of layer thickness on the mechanical properties of cross laminated carbon fiber/epoxy composites. And also the difference of mechanical properties between cross laminated composites of unidirectional prepreg and fabric prepreg has been investigated. Experimental results are showed that the Interlamina Shear Strength(ILSS) of cross laminated carbon fiber/epoxy composites decreased with increasing thickness of unit ply and the decree of delamination in the laminated composites increased as ILSS decreased. Fracture toughness and impact values were found to increase as delamination occurs to some extent in the laminated composites. It Is also shown thats mechanical properties of cross laminates from unidirectional prepreg were better than those of cross laminates from fabric prepreg.

  • PDF

Analytical evaluation and experimental validation of energy harvesting using low-frequency band of piezoelectric bimorph actuator

  • Mishra, Kaushik;Panda, Subrata K.;Kumar, Vikash;Dewangan, Hukum Chand
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.391-401
    • /
    • 2020
  • The present article reports the feasibility of the electrical energy generation from ambient low-frequency vibration using a piezoelectric material mounted on a bimorph cantilever beam actuator. A corresponding higher-order analytical model is developed using MATLAB in conjunction with finite element method under low-frequency with both damped and undamped conditions. An alternate model is also developed to check the material and dimensional viability of both piezoelectric materials (mainly focussed to PVDF and PZT) and the base material. Also, Genetic Algorithm is implemented to find the optimum dimensions which can produce the higher values of voltage at low-frequency frequencies (≤ 100 Hz). The delamination constraints are employed to avoid inter-laminar stresses and to increase the fracture toughness. The delamination has been done using a Teflon sheet sandwiched in between base plates and the piezo material is stuck to the base plate using adhesives. The analytical model is tested for both homogenous and isotropic material characteristics of the base material and extended to investigate the effect of the different geometrical parameters (base plate dimensions, piezo layer dimensions and placement, delamination thickness and placement, excitation frequency) on the model responses of the bimorph cantilever beam. It has been observed that when the base material characteristics are homogenous, the efficiency of the model remains higher when compared to the condition when it is of isotropic material. The necessary convergence behaviour of the current numerical model has been established and checked for the accuracy by comparing with available published results. Finally, using the results obtained from the model, a prototype is fabricated for the experimental validation via a suitable circuit considering Glass fibre and Aluminium as the bimorph material.